import ast import os import requests from PIL import Image import streamlit as st import io api = "https://23d4-188-130-155-153.ngrok-free.app" st.set_page_config(layout="wide") st.title("Stamp2vec 📄") input_image = st.file_uploader("insert image") if(input_image): image = Image.open(input_image) st.header("Original") st.image(input_image, width = 700) detection_model = st.selectbox("Select detection model", ("YOLO-stamp", )) embedding_model = st.selectbox("Select embedding model", ("vits8", )) if st.button("Get prediction"): with st.spinner("Loading..."): response = requests.post(os.path.join(api, f"bounding-boxes-{detection_model}/"), files = {"file": input_image.getvalue(), "model_id": detection_model}) prediction = ast.literal_eval(response.text) response = requests.post(os.path.join(api, f"image-w-boxes-{detection_model}/"), files = {"file": input_image.getvalue(), "model_id": detection_model}) image_with_boxes = response.content arr = [] for b in prediction["bboxes"]: stamp = image.crop((b["xmin"], b["ymin"], b["xmin"] + b["width"], b["ymin"] + b["height"])) output = io.BytesIO() stamp.save(output, format="BMP") response = ast.literal_eval(requests.post(os.path.join(api, f"embeddings-from-cropped-{embedding_model}/"), files = {"file": output.getvalue(), "model_id": embedding_model}).text) arr.extend(response["embedding"]) col1, col2, col3 = st.columns(3) col1.subheader("Prediction") col1.write(prediction) col2.subheader("Image") col2.image(image_with_boxes, use_column_width=True) col3.subheader("Embeddings") col3.write(arr)