Spaces:
Sleeping
Sleeping
JeffreyXiang
commited on
Commit
·
db6a3b7
1
Parent(s):
ceccc26
Upload
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +152 -0
- assets/example_image/T.png +0 -0
- assets/example_image/typical_building_building.png +0 -0
- assets/example_image/typical_building_castle.png +0 -0
- assets/example_image/typical_building_colorful_cottage.png +0 -0
- assets/example_image/typical_building_maya_pyramid.png +0 -0
- assets/example_image/typical_building_mushroom.png +0 -0
- assets/example_image/typical_building_space_station.png +0 -0
- assets/example_image/typical_creature_dragon.png +0 -0
- assets/example_image/typical_creature_elephant.png +0 -0
- assets/example_image/typical_creature_furry.png +0 -0
- assets/example_image/typical_creature_quadruped.png +0 -0
- assets/example_image/typical_creature_robot_crab.png +0 -0
- assets/example_image/typical_creature_robot_dinosour.png +0 -0
- assets/example_image/typical_creature_rock_monster.png +0 -0
- assets/example_image/typical_humanoid_block_robot.png +0 -0
- assets/example_image/typical_humanoid_dragonborn.png +0 -0
- assets/example_image/typical_humanoid_dwarf.png +0 -0
- assets/example_image/typical_humanoid_goblin.png +0 -0
- assets/example_image/typical_humanoid_mech.png +0 -0
- assets/example_image/typical_misc_crate.png +0 -0
- assets/example_image/typical_misc_fireplace.png +0 -0
- assets/example_image/typical_misc_gate.png +0 -0
- assets/example_image/typical_misc_lantern.png +0 -0
- assets/example_image/typical_misc_magicbook.png +0 -0
- assets/example_image/typical_misc_mailbox.png +0 -0
- assets/example_image/typical_misc_monster_chest.png +0 -0
- assets/example_image/typical_misc_paper_machine.png +0 -0
- assets/example_image/typical_misc_phonograph.png +0 -0
- assets/example_image/typical_misc_portal2.png +0 -0
- assets/example_image/typical_misc_storage_chest.png +0 -0
- assets/example_image/typical_misc_telephone.png +0 -0
- assets/example_image/typical_misc_television.png +0 -0
- assets/example_image/typical_misc_workbench.png +0 -0
- assets/example_image/typical_vehicle_biplane.png +0 -0
- assets/example_image/typical_vehicle_bulldozer.png +0 -0
- assets/example_image/typical_vehicle_cart.png +0 -0
- assets/example_image/typical_vehicle_excavator.png +0 -0
- assets/example_image/typical_vehicle_helicopter.png +0 -0
- assets/example_image/typical_vehicle_locomotive.png +0 -0
- assets/example_image/typical_vehicle_pirate_ship.png +0 -0
- assets/example_image/weatherworn_misc_paper_machine3.png +0 -0
- requirements.txt +28 -0
- trellis/__init__.py +6 -0
- trellis/models/__init__.py +70 -0
- trellis/models/sparse_structure_flow.py +200 -0
- trellis/models/sparse_structure_vae.py +306 -0
- trellis/models/structured_latent_flow.py +262 -0
- trellis/models/structured_latent_vae/__init__.py +4 -0
- trellis/models/structured_latent_vae/base.py +117 -0
app.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
# from gradio_litmodel3d import LitModel3D
|
3 |
+
|
4 |
+
import os
|
5 |
+
from typing import *
|
6 |
+
import imageio
|
7 |
+
import uuid
|
8 |
+
from PIL import Image
|
9 |
+
from trellis.pipelines import TrellisImageTo3DPipeline
|
10 |
+
from trellis.utils import render_utils, postprocessing_utils
|
11 |
+
|
12 |
+
|
13 |
+
def preprocess_image(image: Image.Image) -> Image.Image:
|
14 |
+
"""
|
15 |
+
Preprocess the input image.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
image (Image.Image): The input image.
|
19 |
+
|
20 |
+
Returns:
|
21 |
+
Image.Image: The preprocessed image.
|
22 |
+
"""
|
23 |
+
return pipeline.preprocess_image(image)
|
24 |
+
|
25 |
+
|
26 |
+
def image_to_3d(image: Image.Image) -> Tuple[dict, str]:
|
27 |
+
"""
|
28 |
+
Convert an image to a 3D model.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
image (Image.Image): The input image.
|
32 |
+
|
33 |
+
Returns:
|
34 |
+
dict: The information of the generated 3D model.
|
35 |
+
str: The path to the video of the 3D model.
|
36 |
+
"""
|
37 |
+
outputs = pipeline(image, formats=["gaussian", "mesh"], preprocess_image=False)
|
38 |
+
video = render_utils.render_video(outputs['gaussian'][0])['color']
|
39 |
+
model_id = uuid.uuid4()
|
40 |
+
video_path = f"/tmp/Trellis-demo/{model_id}.mp4"
|
41 |
+
os.makedirs(os.path.dirname(video_path), exist_ok=True)
|
42 |
+
imageio.mimsave(video_path, video, fps=30)
|
43 |
+
model = {'gaussian': outputs['gaussian'][0], 'mesh': outputs['mesh'][0], 'model_id': model_id}
|
44 |
+
return model, video_path
|
45 |
+
|
46 |
+
|
47 |
+
def extract_glb(model: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
|
48 |
+
"""
|
49 |
+
Extract a GLB file from the 3D model.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
model (dict): The generated 3D model.
|
53 |
+
mesh_simplify (float): The mesh simplification factor.
|
54 |
+
texture_size (int): The texture resolution.
|
55 |
+
|
56 |
+
Returns:
|
57 |
+
str: The path to the extracted GLB file.
|
58 |
+
"""
|
59 |
+
glb = postprocessing_utils.to_glb(model['gaussian'], model['mesh'], simplify=mesh_simplify, texture_size=texture_size)
|
60 |
+
glb_path = f"/tmp/Trellis-demo/{model['model_id']}.glb"
|
61 |
+
glb.export(glb_path)
|
62 |
+
return glb_path, glb_path
|
63 |
+
|
64 |
+
|
65 |
+
def activate_button() -> gr.Button:
|
66 |
+
return gr.Button(interactive=True)
|
67 |
+
|
68 |
+
|
69 |
+
def deactivate_button() -> gr.Button:
|
70 |
+
return gr.Button(interactive=False)
|
71 |
+
|
72 |
+
|
73 |
+
with gr.Blocks() as demo:
|
74 |
+
with gr.Row():
|
75 |
+
with gr.Column():
|
76 |
+
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300)
|
77 |
+
generate_btn = gr.Button("Generate", interactive=False)
|
78 |
+
|
79 |
+
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
80 |
+
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
81 |
+
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
82 |
+
|
83 |
+
with gr.Column():
|
84 |
+
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
|
85 |
+
model_output = gr.Model3D(label="Extracted GLB", height=300)
|
86 |
+
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
87 |
+
|
88 |
+
# Example images at the bottom of the page
|
89 |
+
with gr.Row():
|
90 |
+
examples = gr.Examples(
|
91 |
+
examples=[
|
92 |
+
f'assets/example_image/{image}'
|
93 |
+
for image in os.listdir("assets/example_image")
|
94 |
+
],
|
95 |
+
inputs=[image_prompt],
|
96 |
+
fn=lambda image: (preprocess_image(image), gr.Button(interactive=True)),
|
97 |
+
outputs=[image_prompt, generate_btn],
|
98 |
+
run_on_click=True,
|
99 |
+
examples_per_page=64,
|
100 |
+
)
|
101 |
+
|
102 |
+
model = gr.State()
|
103 |
+
|
104 |
+
# Handlers
|
105 |
+
image_prompt.upload(
|
106 |
+
preprocess_image,
|
107 |
+
inputs=[image_prompt],
|
108 |
+
outputs=[image_prompt],
|
109 |
+
).then(
|
110 |
+
activate_button,
|
111 |
+
outputs=[generate_btn],
|
112 |
+
)
|
113 |
+
|
114 |
+
image_prompt.clear(
|
115 |
+
deactivate_button,
|
116 |
+
outputs=[generate_btn],
|
117 |
+
)
|
118 |
+
|
119 |
+
generate_btn.click(
|
120 |
+
image_to_3d,
|
121 |
+
inputs=[image_prompt],
|
122 |
+
outputs=[model, video_output],
|
123 |
+
).then(
|
124 |
+
activate_button,
|
125 |
+
outputs=[extract_glb_btn],
|
126 |
+
)
|
127 |
+
|
128 |
+
video_output.clear(
|
129 |
+
deactivate_button,
|
130 |
+
outputs=[extract_glb_btn],
|
131 |
+
)
|
132 |
+
|
133 |
+
extract_glb_btn.click(
|
134 |
+
extract_glb,
|
135 |
+
inputs=[model, mesh_simplify, texture_size],
|
136 |
+
outputs=[model_output, download_glb],
|
137 |
+
).then(
|
138 |
+
activate_button,
|
139 |
+
outputs=[download_glb],
|
140 |
+
)
|
141 |
+
|
142 |
+
model_output.clear(
|
143 |
+
deactivate_button,
|
144 |
+
outputs=[download_glb],
|
145 |
+
)
|
146 |
+
|
147 |
+
|
148 |
+
# Launch the Gradio app
|
149 |
+
if __name__ == "__main__":
|
150 |
+
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
|
151 |
+
pipeline.cuda()
|
152 |
+
demo.launch()
|
assets/example_image/T.png
ADDED
assets/example_image/typical_building_building.png
ADDED
assets/example_image/typical_building_castle.png
ADDED
assets/example_image/typical_building_colorful_cottage.png
ADDED
assets/example_image/typical_building_maya_pyramid.png
ADDED
assets/example_image/typical_building_mushroom.png
ADDED
assets/example_image/typical_building_space_station.png
ADDED
assets/example_image/typical_creature_dragon.png
ADDED
assets/example_image/typical_creature_elephant.png
ADDED
assets/example_image/typical_creature_furry.png
ADDED
assets/example_image/typical_creature_quadruped.png
ADDED
assets/example_image/typical_creature_robot_crab.png
ADDED
assets/example_image/typical_creature_robot_dinosour.png
ADDED
assets/example_image/typical_creature_rock_monster.png
ADDED
assets/example_image/typical_humanoid_block_robot.png
ADDED
assets/example_image/typical_humanoid_dragonborn.png
ADDED
assets/example_image/typical_humanoid_dwarf.png
ADDED
assets/example_image/typical_humanoid_goblin.png
ADDED
assets/example_image/typical_humanoid_mech.png
ADDED
assets/example_image/typical_misc_crate.png
ADDED
assets/example_image/typical_misc_fireplace.png
ADDED
assets/example_image/typical_misc_gate.png
ADDED
assets/example_image/typical_misc_lantern.png
ADDED
assets/example_image/typical_misc_magicbook.png
ADDED
assets/example_image/typical_misc_mailbox.png
ADDED
assets/example_image/typical_misc_monster_chest.png
ADDED
assets/example_image/typical_misc_paper_machine.png
ADDED
assets/example_image/typical_misc_phonograph.png
ADDED
assets/example_image/typical_misc_portal2.png
ADDED
assets/example_image/typical_misc_storage_chest.png
ADDED
assets/example_image/typical_misc_telephone.png
ADDED
assets/example_image/typical_misc_television.png
ADDED
assets/example_image/typical_misc_workbench.png
ADDED
assets/example_image/typical_vehicle_biplane.png
ADDED
assets/example_image/typical_vehicle_bulldozer.png
ADDED
assets/example_image/typical_vehicle_cart.png
ADDED
assets/example_image/typical_vehicle_excavator.png
ADDED
assets/example_image/typical_vehicle_helicopter.png
ADDED
assets/example_image/typical_vehicle_locomotive.png
ADDED
assets/example_image/typical_vehicle_pirate_ship.png
ADDED
assets/example_image/weatherworn_misc_paper_machine3.png
ADDED
requirements.txt
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cu118
|
2 |
+
--find-links https://nvidia-kaolin.s3.us-east-2.amazonaws.com/torch-2.4.0_cu121.html
|
3 |
+
|
4 |
+
|
5 |
+
torch==2.4.0
|
6 |
+
torchvision==0.19.0
|
7 |
+
pillow==10.4.0
|
8 |
+
imageio==2.36.1
|
9 |
+
imageio-ffmpeg==0.5.1
|
10 |
+
tqdm==4.67.1
|
11 |
+
easydict==1.13
|
12 |
+
opencv-python-headless==4.10.0.84
|
13 |
+
scipy==1.14.1
|
14 |
+
rembg==2.0.60
|
15 |
+
onnxruntime==1.20.1
|
16 |
+
trimesh==4.5.3
|
17 |
+
xatlas==0.0.9
|
18 |
+
pyvista==0.44.2
|
19 |
+
pymeshfix==0.17.0
|
20 |
+
igraph==0.11.8
|
21 |
+
git+https://github.com/EasternJournalist/utils3d.git@9a4eb15e4021b67b12c460c7057d642626897ec8
|
22 |
+
xformers==0.0.27.post2+cu118
|
23 |
+
flash-attn==2.7.0.post2
|
24 |
+
kaolin==0.17.0
|
25 |
+
spconv-cu118==2.3.6
|
26 |
+
transformers==4.46.3
|
27 |
+
wheels/nvdiffrast-0.3.3-py3-none-any.whl
|
28 |
+
wheels/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl
|
trellis/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from . import models
|
2 |
+
from . import modules
|
3 |
+
from . import pipelines
|
4 |
+
from . import renderers
|
5 |
+
from . import representations
|
6 |
+
from . import utils
|
trellis/models/__init__.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
|
3 |
+
__attributes = {
|
4 |
+
'SparseStructureEncoder': 'sparse_structure_vae',
|
5 |
+
'SparseStructureDecoder': 'sparse_structure_vae',
|
6 |
+
'SparseStructureFlowModel': 'sparse_structure_flow',
|
7 |
+
'SLatEncoder': 'structured_latent_vae',
|
8 |
+
'SLatGaussianDecoder': 'structured_latent_vae',
|
9 |
+
'SLatRadianceFieldDecoder': 'structured_latent_vae',
|
10 |
+
'SLatMeshDecoder': 'structured_latent_vae',
|
11 |
+
'SLatFlowModel': 'structured_latent_flow',
|
12 |
+
}
|
13 |
+
|
14 |
+
__submodules = []
|
15 |
+
|
16 |
+
__all__ = list(__attributes.keys()) + __submodules
|
17 |
+
|
18 |
+
def __getattr__(name):
|
19 |
+
if name not in globals():
|
20 |
+
if name in __attributes:
|
21 |
+
module_name = __attributes[name]
|
22 |
+
module = importlib.import_module(f".{module_name}", __name__)
|
23 |
+
globals()[name] = getattr(module, name)
|
24 |
+
elif name in __submodules:
|
25 |
+
module = importlib.import_module(f".{name}", __name__)
|
26 |
+
globals()[name] = module
|
27 |
+
else:
|
28 |
+
raise AttributeError(f"module {__name__} has no attribute {name}")
|
29 |
+
return globals()[name]
|
30 |
+
|
31 |
+
|
32 |
+
def from_pretrained(path: str, **kwargs):
|
33 |
+
"""
|
34 |
+
Load a model from a pretrained checkpoint.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
path: The path to the checkpoint. Can be either local path or a Hugging Face model name.
|
38 |
+
NOTE: config file and model file should take the name f'{path}.json' and f'{path}.safetensors' respectively.
|
39 |
+
**kwargs: Additional arguments for the model constructor.
|
40 |
+
"""
|
41 |
+
import os
|
42 |
+
import json
|
43 |
+
from safetensors.torch import load_file
|
44 |
+
is_local = os.path.exists(f"{path}.json") and os.path.exists(f"{path}.safetensors")
|
45 |
+
|
46 |
+
if is_local:
|
47 |
+
config_file = f"{path}.json"
|
48 |
+
model_file = f"{path}.safetensors"
|
49 |
+
else:
|
50 |
+
from huggingface_hub import hf_hub_download
|
51 |
+
path_parts = path.split('/')
|
52 |
+
repo_id = f'{path_parts[0]}/{path_parts[1]}'
|
53 |
+
model_name = '/'.join(path_parts[2:])
|
54 |
+
config_file = hf_hub_download(repo_id, f"{model_name}.json")
|
55 |
+
model_file = hf_hub_download(repo_id, f"{model_name}.safetensors")
|
56 |
+
|
57 |
+
with open(config_file, 'r') as f:
|
58 |
+
config = json.load(f)
|
59 |
+
model = __getattr__(config['name'])(**config['args'], **kwargs)
|
60 |
+
model.load_state_dict(load_file(model_file))
|
61 |
+
|
62 |
+
return model
|
63 |
+
|
64 |
+
|
65 |
+
# For Pylance
|
66 |
+
if __name__ == '__main__':
|
67 |
+
from .sparse_structure_vae import SparseStructureEncoder, SparseStructureDecoder
|
68 |
+
from .sparse_structure_flow import SparseStructureFlowModel
|
69 |
+
from .structured_latent_vae import SLatEncoder, SLatGaussianDecoder, SLatRadianceFieldDecoder, SLatMeshDecoder
|
70 |
+
from .structured_latent_flow import SLatFlowModel
|
trellis/models/sparse_structure_flow.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import numpy as np
|
6 |
+
from ..modules.utils import convert_module_to_f16, convert_module_to_f32
|
7 |
+
from ..modules.transformer import AbsolutePositionEmbedder, ModulatedTransformerCrossBlock
|
8 |
+
from ..modules.spatial import patchify, unpatchify
|
9 |
+
|
10 |
+
|
11 |
+
class TimestepEmbedder(nn.Module):
|
12 |
+
"""
|
13 |
+
Embeds scalar timesteps into vector representations.
|
14 |
+
"""
|
15 |
+
def __init__(self, hidden_size, frequency_embedding_size=256):
|
16 |
+
super().__init__()
|
17 |
+
self.mlp = nn.Sequential(
|
18 |
+
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
19 |
+
nn.SiLU(),
|
20 |
+
nn.Linear(hidden_size, hidden_size, bias=True),
|
21 |
+
)
|
22 |
+
self.frequency_embedding_size = frequency_embedding_size
|
23 |
+
|
24 |
+
@staticmethod
|
25 |
+
def timestep_embedding(t, dim, max_period=10000):
|
26 |
+
"""
|
27 |
+
Create sinusoidal timestep embeddings.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
t: a 1-D Tensor of N indices, one per batch element.
|
31 |
+
These may be fractional.
|
32 |
+
dim: the dimension of the output.
|
33 |
+
max_period: controls the minimum frequency of the embeddings.
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
an (N, D) Tensor of positional embeddings.
|
37 |
+
"""
|
38 |
+
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
39 |
+
half = dim // 2
|
40 |
+
freqs = torch.exp(
|
41 |
+
-np.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
42 |
+
).to(device=t.device)
|
43 |
+
args = t[:, None].float() * freqs[None]
|
44 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
45 |
+
if dim % 2:
|
46 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
47 |
+
return embedding
|
48 |
+
|
49 |
+
def forward(self, t):
|
50 |
+
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
51 |
+
t_emb = self.mlp(t_freq)
|
52 |
+
return t_emb
|
53 |
+
|
54 |
+
|
55 |
+
class SparseStructureFlowModel(nn.Module):
|
56 |
+
def __init__(
|
57 |
+
self,
|
58 |
+
resolution: int,
|
59 |
+
in_channels: int,
|
60 |
+
model_channels: int,
|
61 |
+
cond_channels: int,
|
62 |
+
out_channels: int,
|
63 |
+
num_blocks: int,
|
64 |
+
num_heads: Optional[int] = None,
|
65 |
+
num_head_channels: Optional[int] = 64,
|
66 |
+
mlp_ratio: float = 4,
|
67 |
+
patch_size: int = 2,
|
68 |
+
pe_mode: Literal["ape", "rope"] = "ape",
|
69 |
+
use_fp16: bool = False,
|
70 |
+
use_checkpoint: bool = False,
|
71 |
+
share_mod: bool = False,
|
72 |
+
qk_rms_norm: bool = False,
|
73 |
+
qk_rms_norm_cross: bool = False,
|
74 |
+
):
|
75 |
+
super().__init__()
|
76 |
+
self.resolution = resolution
|
77 |
+
self.in_channels = in_channels
|
78 |
+
self.model_channels = model_channels
|
79 |
+
self.cond_channels = cond_channels
|
80 |
+
self.out_channels = out_channels
|
81 |
+
self.num_blocks = num_blocks
|
82 |
+
self.num_heads = num_heads or model_channels // num_head_channels
|
83 |
+
self.mlp_ratio = mlp_ratio
|
84 |
+
self.patch_size = patch_size
|
85 |
+
self.pe_mode = pe_mode
|
86 |
+
self.use_fp16 = use_fp16
|
87 |
+
self.use_checkpoint = use_checkpoint
|
88 |
+
self.share_mod = share_mod
|
89 |
+
self.qk_rms_norm = qk_rms_norm
|
90 |
+
self.qk_rms_norm_cross = qk_rms_norm_cross
|
91 |
+
self.dtype = torch.float16 if use_fp16 else torch.float32
|
92 |
+
|
93 |
+
self.t_embedder = TimestepEmbedder(model_channels)
|
94 |
+
if share_mod:
|
95 |
+
self.adaLN_modulation = nn.Sequential(
|
96 |
+
nn.SiLU(),
|
97 |
+
nn.Linear(model_channels, 6 * model_channels, bias=True)
|
98 |
+
)
|
99 |
+
|
100 |
+
if pe_mode == "ape":
|
101 |
+
pos_embedder = AbsolutePositionEmbedder(model_channels, 3)
|
102 |
+
coords = torch.meshgrid(*[torch.arange(res, device=self.device) for res in [resolution // patch_size] * 3], indexing='ij')
|
103 |
+
coords = torch.stack(coords, dim=-1).reshape(-1, 3)
|
104 |
+
pos_emb = pos_embedder(coords)
|
105 |
+
self.register_buffer("pos_emb", pos_emb)
|
106 |
+
|
107 |
+
self.input_layer = nn.Linear(in_channels * patch_size**3, model_channels)
|
108 |
+
|
109 |
+
self.blocks = nn.ModuleList([
|
110 |
+
ModulatedTransformerCrossBlock(
|
111 |
+
model_channels,
|
112 |
+
cond_channels,
|
113 |
+
num_heads=self.num_heads,
|
114 |
+
mlp_ratio=self.mlp_ratio,
|
115 |
+
attn_mode='full',
|
116 |
+
use_checkpoint=self.use_checkpoint,
|
117 |
+
use_rope=(pe_mode == "rope"),
|
118 |
+
share_mod=share_mod,
|
119 |
+
qk_rms_norm=self.qk_rms_norm,
|
120 |
+
qk_rms_norm_cross=self.qk_rms_norm_cross,
|
121 |
+
)
|
122 |
+
for _ in range(num_blocks)
|
123 |
+
])
|
124 |
+
|
125 |
+
self.out_layer = nn.Linear(model_channels, out_channels * patch_size**3)
|
126 |
+
|
127 |
+
self.initialize_weights()
|
128 |
+
if use_fp16:
|
129 |
+
self.convert_to_fp16()
|
130 |
+
|
131 |
+
@property
|
132 |
+
def device(self) -> torch.device:
|
133 |
+
"""
|
134 |
+
Return the device of the model.
|
135 |
+
"""
|
136 |
+
return next(self.parameters()).device
|
137 |
+
|
138 |
+
def convert_to_fp16(self) -> None:
|
139 |
+
"""
|
140 |
+
Convert the torso of the model to float16.
|
141 |
+
"""
|
142 |
+
self.blocks.apply(convert_module_to_f16)
|
143 |
+
|
144 |
+
def convert_to_fp32(self) -> None:
|
145 |
+
"""
|
146 |
+
Convert the torso of the model to float32.
|
147 |
+
"""
|
148 |
+
self.blocks.apply(convert_module_to_f32)
|
149 |
+
|
150 |
+
def initialize_weights(self) -> None:
|
151 |
+
# Initialize transformer layers:
|
152 |
+
def _basic_init(module):
|
153 |
+
if isinstance(module, nn.Linear):
|
154 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
155 |
+
if module.bias is not None:
|
156 |
+
nn.init.constant_(module.bias, 0)
|
157 |
+
self.apply(_basic_init)
|
158 |
+
|
159 |
+
# Initialize timestep embedding MLP:
|
160 |
+
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
|
161 |
+
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
|
162 |
+
|
163 |
+
# Zero-out adaLN modulation layers in DiT blocks:
|
164 |
+
if self.share_mod:
|
165 |
+
nn.init.constant_(self.adaLN_modulation[-1].weight, 0)
|
166 |
+
nn.init.constant_(self.adaLN_modulation[-1].bias, 0)
|
167 |
+
else:
|
168 |
+
for block in self.blocks:
|
169 |
+
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
|
170 |
+
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
|
171 |
+
|
172 |
+
# Zero-out output layers:
|
173 |
+
nn.init.constant_(self.out_layer.weight, 0)
|
174 |
+
nn.init.constant_(self.out_layer.bias, 0)
|
175 |
+
|
176 |
+
def forward(self, x: torch.Tensor, t: torch.Tensor, cond: torch.Tensor) -> torch.Tensor:
|
177 |
+
assert [*x.shape] == [x.shape[0], self.in_channels, *[self.resolution] * 3], \
|
178 |
+
f"Input shape mismatch, got {x.shape}, expected {[x.shape[0], self.in_channels, *[self.resolution] * 3]}"
|
179 |
+
|
180 |
+
h = patchify(x, self.patch_size)
|
181 |
+
h = h.view(*h.shape[:2], -1).permute(0, 2, 1).contiguous()
|
182 |
+
|
183 |
+
h = self.input_layer(h)
|
184 |
+
h = h + self.pos_emb[None]
|
185 |
+
t_emb = self.t_embedder(t)
|
186 |
+
if self.share_mod:
|
187 |
+
t_emb = self.adaLN_modulation(t_emb)
|
188 |
+
t_emb = t_emb.type(self.dtype)
|
189 |
+
h = h.type(self.dtype)
|
190 |
+
cond = cond.type(self.dtype)
|
191 |
+
for block in self.blocks:
|
192 |
+
h = block(h, t_emb, cond)
|
193 |
+
h = h.type(x.dtype)
|
194 |
+
h = F.layer_norm(h, h.shape[-1:])
|
195 |
+
h = self.out_layer(h)
|
196 |
+
|
197 |
+
h = h.permute(0, 2, 1).view(h.shape[0], h.shape[2], *[self.resolution // self.patch_size] * 3)
|
198 |
+
h = unpatchify(h, self.patch_size).contiguous()
|
199 |
+
|
200 |
+
return h
|
trellis/models/sparse_structure_vae.py
ADDED
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from ..modules.norm import GroupNorm32, ChannelLayerNorm32
|
6 |
+
from ..modules.spatial import pixel_shuffle_3d
|
7 |
+
from ..modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32
|
8 |
+
|
9 |
+
|
10 |
+
def norm_layer(norm_type: str, *args, **kwargs) -> nn.Module:
|
11 |
+
"""
|
12 |
+
Return a normalization layer.
|
13 |
+
"""
|
14 |
+
if norm_type == "group":
|
15 |
+
return GroupNorm32(32, *args, **kwargs)
|
16 |
+
elif norm_type == "layer":
|
17 |
+
return ChannelLayerNorm32(*args, **kwargs)
|
18 |
+
else:
|
19 |
+
raise ValueError(f"Invalid norm type {norm_type}")
|
20 |
+
|
21 |
+
|
22 |
+
class ResBlock3d(nn.Module):
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
channels: int,
|
26 |
+
out_channels: Optional[int] = None,
|
27 |
+
norm_type: Literal["group", "layer"] = "layer",
|
28 |
+
):
|
29 |
+
super().__init__()
|
30 |
+
self.channels = channels
|
31 |
+
self.out_channels = out_channels or channels
|
32 |
+
|
33 |
+
self.norm1 = norm_layer(norm_type, channels)
|
34 |
+
self.norm2 = norm_layer(norm_type, self.out_channels)
|
35 |
+
self.conv1 = nn.Conv3d(channels, self.out_channels, 3, padding=1)
|
36 |
+
self.conv2 = zero_module(nn.Conv3d(self.out_channels, self.out_channels, 3, padding=1))
|
37 |
+
self.skip_connection = nn.Conv3d(channels, self.out_channels, 1) if channels != self.out_channels else nn.Identity()
|
38 |
+
|
39 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
40 |
+
h = self.norm1(x)
|
41 |
+
h = F.silu(h)
|
42 |
+
h = self.conv1(h)
|
43 |
+
h = self.norm2(h)
|
44 |
+
h = F.silu(h)
|
45 |
+
h = self.conv2(h)
|
46 |
+
h = h + self.skip_connection(x)
|
47 |
+
return h
|
48 |
+
|
49 |
+
|
50 |
+
class DownsampleBlock3d(nn.Module):
|
51 |
+
def __init__(
|
52 |
+
self,
|
53 |
+
in_channels: int,
|
54 |
+
out_channels: int,
|
55 |
+
mode: Literal["conv", "avgpool"] = "conv",
|
56 |
+
):
|
57 |
+
assert mode in ["conv", "avgpool"], f"Invalid mode {mode}"
|
58 |
+
|
59 |
+
super().__init__()
|
60 |
+
self.in_channels = in_channels
|
61 |
+
self.out_channels = out_channels
|
62 |
+
|
63 |
+
if mode == "conv":
|
64 |
+
self.conv = nn.Conv3d(in_channels, out_channels, 2, stride=2)
|
65 |
+
elif mode == "avgpool":
|
66 |
+
assert in_channels == out_channels, "Pooling mode requires in_channels to be equal to out_channels"
|
67 |
+
|
68 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
69 |
+
if hasattr(self, "conv"):
|
70 |
+
return self.conv(x)
|
71 |
+
else:
|
72 |
+
return F.avg_pool3d(x, 2)
|
73 |
+
|
74 |
+
|
75 |
+
class UpsampleBlock3d(nn.Module):
|
76 |
+
def __init__(
|
77 |
+
self,
|
78 |
+
in_channels: int,
|
79 |
+
out_channels: int,
|
80 |
+
mode: Literal["conv", "nearest"] = "conv",
|
81 |
+
):
|
82 |
+
assert mode in ["conv", "nearest"], f"Invalid mode {mode}"
|
83 |
+
|
84 |
+
super().__init__()
|
85 |
+
self.in_channels = in_channels
|
86 |
+
self.out_channels = out_channels
|
87 |
+
|
88 |
+
if mode == "conv":
|
89 |
+
self.conv = nn.Conv3d(in_channels, out_channels*8, 3, padding=1)
|
90 |
+
elif mode == "nearest":
|
91 |
+
assert in_channels == out_channels, "Nearest mode requires in_channels to be equal to out_channels"
|
92 |
+
|
93 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
94 |
+
if hasattr(self, "conv"):
|
95 |
+
x = self.conv(x)
|
96 |
+
return pixel_shuffle_3d(x, 2)
|
97 |
+
else:
|
98 |
+
return F.interpolate(x, scale_factor=2, mode="nearest")
|
99 |
+
|
100 |
+
|
101 |
+
class SparseStructureEncoder(nn.Module):
|
102 |
+
"""
|
103 |
+
Encoder for Sparse Structure (\mathcal{E}_S in the paper Sec. 3.3).
|
104 |
+
|
105 |
+
Args:
|
106 |
+
in_channels (int): Channels of the input.
|
107 |
+
latent_channels (int): Channels of the latent representation.
|
108 |
+
num_res_blocks (int): Number of residual blocks at each resolution.
|
109 |
+
channels (List[int]): Channels of the encoder blocks.
|
110 |
+
num_res_blocks_middle (int): Number of residual blocks in the middle.
|
111 |
+
norm_type (Literal["group", "layer"]): Type of normalization layer.
|
112 |
+
use_fp16 (bool): Whether to use FP16.
|
113 |
+
"""
|
114 |
+
def __init__(
|
115 |
+
self,
|
116 |
+
in_channels: int,
|
117 |
+
latent_channels: int,
|
118 |
+
num_res_blocks: int,
|
119 |
+
channels: List[int],
|
120 |
+
num_res_blocks_middle: int = 2,
|
121 |
+
norm_type: Literal["group", "layer"] = "layer",
|
122 |
+
use_fp16: bool = False,
|
123 |
+
):
|
124 |
+
super().__init__()
|
125 |
+
self.in_channels = in_channels
|
126 |
+
self.latent_channels = latent_channels
|
127 |
+
self.num_res_blocks = num_res_blocks
|
128 |
+
self.channels = channels
|
129 |
+
self.num_res_blocks_middle = num_res_blocks_middle
|
130 |
+
self.norm_type = norm_type
|
131 |
+
self.use_fp16 = use_fp16
|
132 |
+
self.dtype = torch.float16 if use_fp16 else torch.float32
|
133 |
+
|
134 |
+
self.input_layer = nn.Conv3d(in_channels, channels[0], 3, padding=1)
|
135 |
+
|
136 |
+
self.blocks = nn.ModuleList([])
|
137 |
+
for i, ch in enumerate(channels):
|
138 |
+
self.blocks.extend([
|
139 |
+
ResBlock3d(ch, ch)
|
140 |
+
for _ in range(num_res_blocks)
|
141 |
+
])
|
142 |
+
if i < len(channels) - 1:
|
143 |
+
self.blocks.append(
|
144 |
+
DownsampleBlock3d(ch, channels[i+1])
|
145 |
+
)
|
146 |
+
|
147 |
+
self.middle_block = nn.Sequential(*[
|
148 |
+
ResBlock3d(channels[-1], channels[-1])
|
149 |
+
for _ in range(num_res_blocks_middle)
|
150 |
+
])
|
151 |
+
|
152 |
+
self.out_layer = nn.Sequential(
|
153 |
+
norm_layer(norm_type, channels[-1]),
|
154 |
+
nn.SiLU(),
|
155 |
+
nn.Conv3d(channels[-1], latent_channels*2, 3, padding=1)
|
156 |
+
)
|
157 |
+
|
158 |
+
if use_fp16:
|
159 |
+
self.convert_to_fp16()
|
160 |
+
|
161 |
+
@property
|
162 |
+
def device(self) -> torch.device:
|
163 |
+
"""
|
164 |
+
Return the device of the model.
|
165 |
+
"""
|
166 |
+
return next(self.parameters()).device
|
167 |
+
|
168 |
+
def convert_to_fp16(self) -> None:
|
169 |
+
"""
|
170 |
+
Convert the torso of the model to float16.
|
171 |
+
"""
|
172 |
+
self.use_fp16 = True
|
173 |
+
self.dtype = torch.float16
|
174 |
+
self.blocks.apply(convert_module_to_f16)
|
175 |
+
self.middle_block.apply(convert_module_to_f16)
|
176 |
+
|
177 |
+
def convert_to_fp32(self) -> None:
|
178 |
+
"""
|
179 |
+
Convert the torso of the model to float32.
|
180 |
+
"""
|
181 |
+
self.use_fp16 = False
|
182 |
+
self.dtype = torch.float32
|
183 |
+
self.blocks.apply(convert_module_to_f32)
|
184 |
+
self.middle_block.apply(convert_module_to_f32)
|
185 |
+
|
186 |
+
def forward(self, x: torch.Tensor, sample_posterior: bool = False, return_raw: bool = False) -> torch.Tensor:
|
187 |
+
h = self.input_layer(x)
|
188 |
+
h = h.type(self.dtype)
|
189 |
+
|
190 |
+
for block in self.blocks:
|
191 |
+
h = block(h)
|
192 |
+
h = self.middle_block(h)
|
193 |
+
|
194 |
+
h = h.type(x.dtype)
|
195 |
+
h = self.out_layer(h)
|
196 |
+
|
197 |
+
mean, logvar = h.chunk(2, dim=1)
|
198 |
+
|
199 |
+
if sample_posterior:
|
200 |
+
std = torch.exp(0.5 * logvar)
|
201 |
+
z = mean + std * torch.randn_like(std)
|
202 |
+
else:
|
203 |
+
z = mean
|
204 |
+
|
205 |
+
if return_raw:
|
206 |
+
return z, mean, logvar
|
207 |
+
return z
|
208 |
+
|
209 |
+
|
210 |
+
class SparseStructureDecoder(nn.Module):
|
211 |
+
"""
|
212 |
+
Decoder for Sparse Structure (\mathcal{D}_S in the paper Sec. 3.3).
|
213 |
+
|
214 |
+
Args:
|
215 |
+
out_channels (int): Channels of the output.
|
216 |
+
latent_channels (int): Channels of the latent representation.
|
217 |
+
num_res_blocks (int): Number of residual blocks at each resolution.
|
218 |
+
channels (List[int]): Channels of the decoder blocks.
|
219 |
+
num_res_blocks_middle (int): Number of residual blocks in the middle.
|
220 |
+
norm_type (Literal["group", "layer"]): Type of normalization layer.
|
221 |
+
use_fp16 (bool): Whether to use FP16.
|
222 |
+
"""
|
223 |
+
def __init__(
|
224 |
+
self,
|
225 |
+
out_channels: int,
|
226 |
+
latent_channels: int,
|
227 |
+
num_res_blocks: int,
|
228 |
+
channels: List[int],
|
229 |
+
num_res_blocks_middle: int = 2,
|
230 |
+
norm_type: Literal["group", "layer"] = "layer",
|
231 |
+
use_fp16: bool = False,
|
232 |
+
):
|
233 |
+
super().__init__()
|
234 |
+
self.out_channels = out_channels
|
235 |
+
self.latent_channels = latent_channels
|
236 |
+
self.num_res_blocks = num_res_blocks
|
237 |
+
self.channels = channels
|
238 |
+
self.num_res_blocks_middle = num_res_blocks_middle
|
239 |
+
self.norm_type = norm_type
|
240 |
+
self.use_fp16 = use_fp16
|
241 |
+
self.dtype = torch.float16 if use_fp16 else torch.float32
|
242 |
+
|
243 |
+
self.input_layer = nn.Conv3d(latent_channels, channels[0], 3, padding=1)
|
244 |
+
|
245 |
+
self.middle_block = nn.Sequential(*[
|
246 |
+
ResBlock3d(channels[0], channels[0])
|
247 |
+
for _ in range(num_res_blocks_middle)
|
248 |
+
])
|
249 |
+
|
250 |
+
self.blocks = nn.ModuleList([])
|
251 |
+
for i, ch in enumerate(channels):
|
252 |
+
self.blocks.extend([
|
253 |
+
ResBlock3d(ch, ch)
|
254 |
+
for _ in range(num_res_blocks)
|
255 |
+
])
|
256 |
+
if i < len(channels) - 1:
|
257 |
+
self.blocks.append(
|
258 |
+
UpsampleBlock3d(ch, channels[i+1])
|
259 |
+
)
|
260 |
+
|
261 |
+
self.out_layer = nn.Sequential(
|
262 |
+
norm_layer(norm_type, channels[-1]),
|
263 |
+
nn.SiLU(),
|
264 |
+
nn.Conv3d(channels[-1], out_channels, 3, padding=1)
|
265 |
+
)
|
266 |
+
|
267 |
+
if use_fp16:
|
268 |
+
self.convert_to_fp16()
|
269 |
+
|
270 |
+
@property
|
271 |
+
def device(self) -> torch.device:
|
272 |
+
"""
|
273 |
+
Return the device of the model.
|
274 |
+
"""
|
275 |
+
return next(self.parameters()).device
|
276 |
+
|
277 |
+
def convert_to_fp16(self) -> None:
|
278 |
+
"""
|
279 |
+
Convert the torso of the model to float16.
|
280 |
+
"""
|
281 |
+
self.use_fp16 = True
|
282 |
+
self.dtype = torch.float16
|
283 |
+
self.blocks.apply(convert_module_to_f16)
|
284 |
+
self.middle_block.apply(convert_module_to_f16)
|
285 |
+
|
286 |
+
def convert_to_fp32(self) -> None:
|
287 |
+
"""
|
288 |
+
Convert the torso of the model to float32.
|
289 |
+
"""
|
290 |
+
self.use_fp16 = False
|
291 |
+
self.dtype = torch.float32
|
292 |
+
self.blocks.apply(convert_module_to_f32)
|
293 |
+
self.middle_block.apply(convert_module_to_f32)
|
294 |
+
|
295 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
296 |
+
h = self.input_layer(x)
|
297 |
+
|
298 |
+
h = h.type(self.dtype)
|
299 |
+
|
300 |
+
h = self.middle_block(h)
|
301 |
+
for block in self.blocks:
|
302 |
+
h = block(h)
|
303 |
+
|
304 |
+
h = h.type(x.dtype)
|
305 |
+
h = self.out_layer(h)
|
306 |
+
return h
|
trellis/models/structured_latent_flow.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import numpy as np
|
6 |
+
from ..modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32
|
7 |
+
from ..modules.transformer import AbsolutePositionEmbedder
|
8 |
+
from ..modules.norm import LayerNorm32
|
9 |
+
from ..modules import sparse as sp
|
10 |
+
from ..modules.sparse.transformer import ModulatedSparseTransformerCrossBlock
|
11 |
+
from .sparse_structure_flow import TimestepEmbedder
|
12 |
+
|
13 |
+
|
14 |
+
class SparseResBlock3d(nn.Module):
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
channels: int,
|
18 |
+
emb_channels: int,
|
19 |
+
out_channels: Optional[int] = None,
|
20 |
+
downsample: bool = False,
|
21 |
+
upsample: bool = False,
|
22 |
+
):
|
23 |
+
super().__init__()
|
24 |
+
self.channels = channels
|
25 |
+
self.emb_channels = emb_channels
|
26 |
+
self.out_channels = out_channels or channels
|
27 |
+
self.downsample = downsample
|
28 |
+
self.upsample = upsample
|
29 |
+
|
30 |
+
assert not (downsample and upsample), "Cannot downsample and upsample at the same time"
|
31 |
+
|
32 |
+
self.norm1 = LayerNorm32(channels, elementwise_affine=True, eps=1e-6)
|
33 |
+
self.norm2 = LayerNorm32(self.out_channels, elementwise_affine=False, eps=1e-6)
|
34 |
+
self.conv1 = sp.SparseConv3d(channels, self.out_channels, 3)
|
35 |
+
self.conv2 = zero_module(sp.SparseConv3d(self.out_channels, self.out_channels, 3))
|
36 |
+
self.emb_layers = nn.Sequential(
|
37 |
+
nn.SiLU(),
|
38 |
+
nn.Linear(emb_channels, 2 * self.out_channels, bias=True),
|
39 |
+
)
|
40 |
+
self.skip_connection = sp.SparseLinear(channels, self.out_channels) if channels != self.out_channels else nn.Identity()
|
41 |
+
self.updown = None
|
42 |
+
if self.downsample:
|
43 |
+
self.updown = sp.SparseDownsample(2)
|
44 |
+
elif self.upsample:
|
45 |
+
self.updown = sp.SparseUpsample(2)
|
46 |
+
|
47 |
+
def _updown(self, x: sp.SparseTensor) -> sp.SparseTensor:
|
48 |
+
if self.updown is not None:
|
49 |
+
x = self.updown(x)
|
50 |
+
return x
|
51 |
+
|
52 |
+
def forward(self, x: sp.SparseTensor, emb: torch.Tensor) -> sp.SparseTensor:
|
53 |
+
emb_out = self.emb_layers(emb).type(x.dtype)
|
54 |
+
scale, shift = torch.chunk(emb_out, 2, dim=1)
|
55 |
+
|
56 |
+
x = self._updown(x)
|
57 |
+
h = x.replace(self.norm1(x.feats))
|
58 |
+
h = h.replace(F.silu(h.feats))
|
59 |
+
h = self.conv1(h)
|
60 |
+
h = h.replace(self.norm2(h.feats)) * (1 + scale) + shift
|
61 |
+
h = h.replace(F.silu(h.feats))
|
62 |
+
h = self.conv2(h)
|
63 |
+
h = h + self.skip_connection(x)
|
64 |
+
|
65 |
+
return h
|
66 |
+
|
67 |
+
|
68 |
+
class SLatFlowModel(nn.Module):
|
69 |
+
def __init__(
|
70 |
+
self,
|
71 |
+
resolution: int,
|
72 |
+
in_channels: int,
|
73 |
+
model_channels: int,
|
74 |
+
cond_channels: int,
|
75 |
+
out_channels: int,
|
76 |
+
num_blocks: int,
|
77 |
+
num_heads: Optional[int] = None,
|
78 |
+
num_head_channels: Optional[int] = 64,
|
79 |
+
mlp_ratio: float = 4,
|
80 |
+
patch_size: int = 2,
|
81 |
+
num_io_res_blocks: int = 2,
|
82 |
+
io_block_channels: List[int] = None,
|
83 |
+
pe_mode: Literal["ape", "rope"] = "ape",
|
84 |
+
use_fp16: bool = False,
|
85 |
+
use_checkpoint: bool = False,
|
86 |
+
use_skip_connection: bool = True,
|
87 |
+
share_mod: bool = False,
|
88 |
+
qk_rms_norm: bool = False,
|
89 |
+
qk_rms_norm_cross: bool = False,
|
90 |
+
):
|
91 |
+
super().__init__()
|
92 |
+
self.resolution = resolution
|
93 |
+
self.in_channels = in_channels
|
94 |
+
self.model_channels = model_channels
|
95 |
+
self.cond_channels = cond_channels
|
96 |
+
self.out_channels = out_channels
|
97 |
+
self.num_blocks = num_blocks
|
98 |
+
self.num_heads = num_heads or model_channels // num_head_channels
|
99 |
+
self.mlp_ratio = mlp_ratio
|
100 |
+
self.patch_size = patch_size
|
101 |
+
self.num_io_res_blocks = num_io_res_blocks
|
102 |
+
self.io_block_channels = io_block_channels
|
103 |
+
self.pe_mode = pe_mode
|
104 |
+
self.use_fp16 = use_fp16
|
105 |
+
self.use_checkpoint = use_checkpoint
|
106 |
+
self.use_skip_connection = use_skip_connection
|
107 |
+
self.share_mod = share_mod
|
108 |
+
self.qk_rms_norm = qk_rms_norm
|
109 |
+
self.qk_rms_norm_cross = qk_rms_norm_cross
|
110 |
+
self.dtype = torch.float16 if use_fp16 else torch.float32
|
111 |
+
|
112 |
+
assert int(np.log2(patch_size)) == np.log2(patch_size), "Patch size must be a power of 2"
|
113 |
+
assert np.log2(patch_size) == len(io_block_channels), "Number of IO ResBlocks must match the number of stages"
|
114 |
+
|
115 |
+
self.t_embedder = TimestepEmbedder(model_channels)
|
116 |
+
if share_mod:
|
117 |
+
self.adaLN_modulation = nn.Sequential(
|
118 |
+
nn.SiLU(),
|
119 |
+
nn.Linear(model_channels, 6 * model_channels, bias=True)
|
120 |
+
)
|
121 |
+
|
122 |
+
if pe_mode == "ape":
|
123 |
+
self.pos_embedder = AbsolutePositionEmbedder(model_channels)
|
124 |
+
|
125 |
+
self.input_layer = sp.SparseLinear(in_channels, io_block_channels[0])
|
126 |
+
self.input_blocks = nn.ModuleList([])
|
127 |
+
for chs, next_chs in zip(io_block_channels, io_block_channels[1:] + [model_channels]):
|
128 |
+
self.input_blocks.extend([
|
129 |
+
SparseResBlock3d(
|
130 |
+
chs,
|
131 |
+
model_channels,
|
132 |
+
out_channels=chs,
|
133 |
+
)
|
134 |
+
for _ in range(num_io_res_blocks-1)
|
135 |
+
])
|
136 |
+
self.input_blocks.append(
|
137 |
+
SparseResBlock3d(
|
138 |
+
chs,
|
139 |
+
model_channels,
|
140 |
+
out_channels=next_chs,
|
141 |
+
downsample=True,
|
142 |
+
)
|
143 |
+
)
|
144 |
+
|
145 |
+
self.blocks = nn.ModuleList([
|
146 |
+
ModulatedSparseTransformerCrossBlock(
|
147 |
+
model_channels,
|
148 |
+
cond_channels,
|
149 |
+
num_heads=self.num_heads,
|
150 |
+
mlp_ratio=self.mlp_ratio,
|
151 |
+
attn_mode='full',
|
152 |
+
use_checkpoint=self.use_checkpoint,
|
153 |
+
use_rope=(pe_mode == "rope"),
|
154 |
+
share_mod=self.share_mod,
|
155 |
+
qk_rms_norm=self.qk_rms_norm,
|
156 |
+
qk_rms_norm_cross=self.qk_rms_norm_cross,
|
157 |
+
)
|
158 |
+
for _ in range(num_blocks)
|
159 |
+
])
|
160 |
+
|
161 |
+
self.out_blocks = nn.ModuleList([])
|
162 |
+
for chs, prev_chs in zip(reversed(io_block_channels), [model_channels] + list(reversed(io_block_channels[1:]))):
|
163 |
+
self.out_blocks.append(
|
164 |
+
SparseResBlock3d(
|
165 |
+
prev_chs * 2 if self.use_skip_connection else prev_chs,
|
166 |
+
model_channels,
|
167 |
+
out_channels=chs,
|
168 |
+
upsample=True,
|
169 |
+
)
|
170 |
+
)
|
171 |
+
self.out_blocks.extend([
|
172 |
+
SparseResBlock3d(
|
173 |
+
chs * 2 if self.use_skip_connection else chs,
|
174 |
+
model_channels,
|
175 |
+
out_channels=chs,
|
176 |
+
)
|
177 |
+
for _ in range(num_io_res_blocks-1)
|
178 |
+
])
|
179 |
+
self.out_layer = sp.SparseLinear(io_block_channels[0], out_channels)
|
180 |
+
|
181 |
+
self.initialize_weights()
|
182 |
+
if use_fp16:
|
183 |
+
self.convert_to_fp16()
|
184 |
+
|
185 |
+
@property
|
186 |
+
def device(self) -> torch.device:
|
187 |
+
"""
|
188 |
+
Return the device of the model.
|
189 |
+
"""
|
190 |
+
return next(self.parameters()).device
|
191 |
+
|
192 |
+
def convert_to_fp16(self) -> None:
|
193 |
+
"""
|
194 |
+
Convert the torso of the model to float16.
|
195 |
+
"""
|
196 |
+
self.input_blocks.apply(convert_module_to_f16)
|
197 |
+
self.blocks.apply(convert_module_to_f16)
|
198 |
+
self.out_blocks.apply(convert_module_to_f16)
|
199 |
+
|
200 |
+
def convert_to_fp32(self) -> None:
|
201 |
+
"""
|
202 |
+
Convert the torso of the model to float32.
|
203 |
+
"""
|
204 |
+
self.input_blocks.apply(convert_module_to_f32)
|
205 |
+
self.blocks.apply(convert_module_to_f32)
|
206 |
+
self.out_blocks.apply(convert_module_to_f32)
|
207 |
+
|
208 |
+
def initialize_weights(self) -> None:
|
209 |
+
# Initialize transformer layers:
|
210 |
+
def _basic_init(module):
|
211 |
+
if isinstance(module, nn.Linear):
|
212 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
213 |
+
if module.bias is not None:
|
214 |
+
nn.init.constant_(module.bias, 0)
|
215 |
+
self.apply(_basic_init)
|
216 |
+
|
217 |
+
# Initialize timestep embedding MLP:
|
218 |
+
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
|
219 |
+
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
|
220 |
+
|
221 |
+
# Zero-out adaLN modulation layers in DiT blocks:
|
222 |
+
if self.share_mod:
|
223 |
+
nn.init.constant_(self.adaLN_modulation[-1].weight, 0)
|
224 |
+
nn.init.constant_(self.adaLN_modulation[-1].bias, 0)
|
225 |
+
else:
|
226 |
+
for block in self.blocks:
|
227 |
+
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
|
228 |
+
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
|
229 |
+
|
230 |
+
# Zero-out output layers:
|
231 |
+
nn.init.constant_(self.out_layer.weight, 0)
|
232 |
+
nn.init.constant_(self.out_layer.bias, 0)
|
233 |
+
|
234 |
+
def forward(self, x: sp.SparseTensor, t: torch.Tensor, cond: torch.Tensor) -> sp.SparseTensor:
|
235 |
+
h = self.input_layer(x).type(self.dtype)
|
236 |
+
t_emb = self.t_embedder(t)
|
237 |
+
if self.share_mod:
|
238 |
+
t_emb = self.adaLN_modulation(t_emb)
|
239 |
+
t_emb = t_emb.type(self.dtype)
|
240 |
+
cond = cond.type(self.dtype)
|
241 |
+
|
242 |
+
skips = []
|
243 |
+
# pack with input blocks
|
244 |
+
for block in self.input_blocks:
|
245 |
+
h = block(h, t_emb)
|
246 |
+
skips.append(h.feats)
|
247 |
+
|
248 |
+
if self.pe_mode == "ape":
|
249 |
+
h = h + self.pos_embedder(h.coords[:, 1:]).type(self.dtype)
|
250 |
+
for block in self.blocks:
|
251 |
+
h = block(h, t_emb, cond)
|
252 |
+
|
253 |
+
# unpack with output blocks
|
254 |
+
for block, skip in zip(self.out_blocks, reversed(skips)):
|
255 |
+
if self.use_skip_connection:
|
256 |
+
h = block(h.replace(torch.cat([h.feats, skip], dim=1)), t_emb)
|
257 |
+
else:
|
258 |
+
h = block(h, t_emb)
|
259 |
+
|
260 |
+
h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:]))
|
261 |
+
h = self.out_layer(h.type(x.dtype))
|
262 |
+
return h
|
trellis/models/structured_latent_vae/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .encoder import SLatEncoder
|
2 |
+
from .decoder_gs import SLatGaussianDecoder
|
3 |
+
from .decoder_rf import SLatRadianceFieldDecoder
|
4 |
+
from .decoder_mesh import SLatMeshDecoder
|
trellis/models/structured_latent_vae/base.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from ...modules.utils import convert_module_to_f16, convert_module_to_f32
|
5 |
+
from ...modules import sparse as sp
|
6 |
+
from ...modules.transformer import AbsolutePositionEmbedder
|
7 |
+
from ...modules.sparse.transformer import SparseTransformerBlock
|
8 |
+
|
9 |
+
|
10 |
+
def block_attn_config(self):
|
11 |
+
"""
|
12 |
+
Return the attention configuration of the model.
|
13 |
+
"""
|
14 |
+
for i in range(self.num_blocks):
|
15 |
+
if self.attn_mode == "shift_window":
|
16 |
+
yield "serialized", self.window_size, 0, (16 * (i % 2),) * 3, sp.SerializeMode.Z_ORDER
|
17 |
+
elif self.attn_mode == "shift_sequence":
|
18 |
+
yield "serialized", self.window_size, self.window_size // 2 * (i % 2), (0, 0, 0), sp.SerializeMode.Z_ORDER
|
19 |
+
elif self.attn_mode == "shift_order":
|
20 |
+
yield "serialized", self.window_size, 0, (0, 0, 0), sp.SerializeModes[i % 4]
|
21 |
+
elif self.attn_mode == "full":
|
22 |
+
yield "full", None, None, None, None
|
23 |
+
elif self.attn_mode == "swin":
|
24 |
+
yield "windowed", self.window_size, None, self.window_size // 2 * (i % 2), None
|
25 |
+
|
26 |
+
|
27 |
+
class SparseTransformerBase(nn.Module):
|
28 |
+
"""
|
29 |
+
Sparse Transformer without output layers.
|
30 |
+
Serve as the base class for encoder and decoder.
|
31 |
+
"""
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
in_channels: int,
|
35 |
+
model_channels: int,
|
36 |
+
num_blocks: int,
|
37 |
+
num_heads: Optional[int] = None,
|
38 |
+
num_head_channels: Optional[int] = 64,
|
39 |
+
mlp_ratio: float = 4.0,
|
40 |
+
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full",
|
41 |
+
window_size: Optional[int] = None,
|
42 |
+
pe_mode: Literal["ape", "rope"] = "ape",
|
43 |
+
use_fp16: bool = False,
|
44 |
+
use_checkpoint: bool = False,
|
45 |
+
qk_rms_norm: bool = False,
|
46 |
+
):
|
47 |
+
super().__init__()
|
48 |
+
self.in_channels = in_channels
|
49 |
+
self.model_channels = model_channels
|
50 |
+
self.num_blocks = num_blocks
|
51 |
+
self.window_size = window_size
|
52 |
+
self.num_heads = num_heads or model_channels // num_head_channels
|
53 |
+
self.mlp_ratio = mlp_ratio
|
54 |
+
self.attn_mode = attn_mode
|
55 |
+
self.pe_mode = pe_mode
|
56 |
+
self.use_fp16 = use_fp16
|
57 |
+
self.use_checkpoint = use_checkpoint
|
58 |
+
self.qk_rms_norm = qk_rms_norm
|
59 |
+
self.dtype = torch.float16 if use_fp16 else torch.float32
|
60 |
+
|
61 |
+
if pe_mode == "ape":
|
62 |
+
self.pos_embedder = AbsolutePositionEmbedder(model_channels)
|
63 |
+
|
64 |
+
self.input_layer = sp.SparseLinear(in_channels, model_channels)
|
65 |
+
self.blocks = nn.ModuleList([
|
66 |
+
SparseTransformerBlock(
|
67 |
+
model_channels,
|
68 |
+
num_heads=self.num_heads,
|
69 |
+
mlp_ratio=self.mlp_ratio,
|
70 |
+
attn_mode=attn_mode,
|
71 |
+
window_size=window_size,
|
72 |
+
shift_sequence=shift_sequence,
|
73 |
+
shift_window=shift_window,
|
74 |
+
serialize_mode=serialize_mode,
|
75 |
+
use_checkpoint=self.use_checkpoint,
|
76 |
+
use_rope=(pe_mode == "rope"),
|
77 |
+
qk_rms_norm=self.qk_rms_norm,
|
78 |
+
)
|
79 |
+
for attn_mode, window_size, shift_sequence, shift_window, serialize_mode in block_attn_config(self)
|
80 |
+
])
|
81 |
+
|
82 |
+
@property
|
83 |
+
def device(self) -> torch.device:
|
84 |
+
"""
|
85 |
+
Return the device of the model.
|
86 |
+
"""
|
87 |
+
return next(self.parameters()).device
|
88 |
+
|
89 |
+
def convert_to_fp16(self) -> None:
|
90 |
+
"""
|
91 |
+
Convert the torso of the model to float16.
|
92 |
+
"""
|
93 |
+
self.blocks.apply(convert_module_to_f16)
|
94 |
+
|
95 |
+
def convert_to_fp32(self) -> None:
|
96 |
+
"""
|
97 |
+
Convert the torso of the model to float32.
|
98 |
+
"""
|
99 |
+
self.blocks.apply(convert_module_to_f32)
|
100 |
+
|
101 |
+
def initialize_weights(self) -> None:
|
102 |
+
# Initialize transformer layers:
|
103 |
+
def _basic_init(module):
|
104 |
+
if isinstance(module, nn.Linear):
|
105 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
106 |
+
if module.bias is not None:
|
107 |
+
nn.init.constant_(module.bias, 0)
|
108 |
+
self.apply(_basic_init)
|
109 |
+
|
110 |
+
def forward(self, x: sp.SparseTensor) -> sp.SparseTensor:
|
111 |
+
h = self.input_layer(x)
|
112 |
+
if self.pe_mode == "ape":
|
113 |
+
h = h + self.pos_embedder(x.coords[:, 1:])
|
114 |
+
h = h.type(self.dtype)
|
115 |
+
for block in self.blocks:
|
116 |
+
h = block(h)
|
117 |
+
return h
|