File size: 3,397 Bytes
4f2b696 cbbb801 36debf9 cbbb801 36debf9 4f2b696 cbbb801 4f2b696 5ead04d cbbb801 be1456b cbbb801 5ead04d 4f2b696 cbbb801 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
import streamlit as st
import torch
from PIL import Image
from huggingface_hub import hf_hub_download
from transformers import VisionEncoderDecoderModel
import warnings
from contextlib import contextmanager
from transformers import MBartTokenizer, ViTImageProcessor, XLMRobertaTokenizer
from transformers import ProcessorMixin
class CustomOCRProcessor(ProcessorMixin):
attributes = ["image_processor", "tokenizer"]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead.",
FutureWarning,
)
feature_extractor = kwargs.pop("feature_extractor")
image_processor = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
super().__init__(image_processor, tokenizer)
self.current_processor = self.image_processor
self._in_target_context_manager = False
def __call__(self, *args, **kwargs):
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*args, **kwargs)
images = kwargs.pop("images", None)
text = kwargs.pop("text", None)
if len(args) > 0:
images = args[0]
args = args[1:]
if images is None and text is None:
raise ValueError("You need to specify either an `images` or `text` input to process.")
if images is not None:
inputs = self.image_processor(images, *args, **kwargs)
if text is not None:
encodings = self.tokenizer(text, **kwargs)
if text is None:
return inputs
elif images is None:
return encodings
else:
inputs["labels"] = encodings["input_ids"]
return inputs
def batch_decode(self, *args, **kwargs):
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
return self.tokenizer.decode(*args, **kwargs)
image_processor = ViTImageProcessor.from_pretrained(
'microsoft/swin-base-patch4-window12-384-in22k'
)
tokenizer = MBartTokenizer.from_pretrained(
'facebook/mbart-large-50'
)
processortext2 = CustomOCRProcessor(image_processor,tokenizer)
import os
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
model2 = VisionEncoderDecoderModel.from_pretrained("musadac/vilanocr-single-urdu", use_auth_token=huggingface_token)
st.title("Image OCR with musadac/vilanocr")
uploaded_file = st.file_uploader("Choose an image", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
img = Image.open(uploaded_file).convert("RGB")
pixel_values = processortext2(img.convert("RGB"), return_tensors="pt").pixel_values
with torch.no_grad():
generated_ids = model2.generate(pixel_values)
result = processortext2.batch_decode(generated_ids, skip_special_tokens=True)[0]
st.write("OCR Result:")
st.write(result)
|