|
import torch |
|
from PIL import Image |
|
from huggingface_hub import hf_hub_download |
|
from transformers import VisionEncoderDecoderModel |
|
from fastapi import FastAPI, File, UploadFile |
|
from fastapi.responses import HTMLResponse |
|
from fastapi.staticfiles import StaticFiles |
|
from fastapi.templating import Jinja2Templates |
|
|
|
|
|
import warnings |
|
from contextlib import contextmanager |
|
from transformers import MBartTokenizer, ViTImageProcessor, XLMRobertaTokenizer |
|
from transformers import ProcessorMixin |
|
|
|
|
|
class CustomOCRProcessor(ProcessorMixin): |
|
attributes = ["image_processor", "tokenizer"] |
|
image_processor_class = "AutoImageProcessor" |
|
tokenizer_class = "AutoTokenizer" |
|
|
|
def __init__(self, image_processor=None, tokenizer=None, **kwargs): |
|
if "feature_extractor" in kwargs: |
|
warnings.warn( |
|
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" |
|
" instead.", |
|
FutureWarning, |
|
) |
|
feature_extractor = kwargs.pop("feature_extractor") |
|
|
|
image_processor = image_processor if image_processor is not None else feature_extractor |
|
if image_processor is None: |
|
raise ValueError("You need to specify an `image_processor`.") |
|
if tokenizer is None: |
|
raise ValueError("You need to specify a `tokenizer`.") |
|
|
|
super().__init__(image_processor, tokenizer) |
|
self.current_processor = self.image_processor |
|
self._in_target_context_manager = False |
|
|
|
def __call__(self, *args, **kwargs): |
|
|
|
if self._in_target_context_manager: |
|
return self.current_processor(*args, **kwargs) |
|
|
|
images = kwargs.pop("images", None) |
|
text = kwargs.pop("text", None) |
|
if len(args) > 0: |
|
images = args[0] |
|
args = args[1:] |
|
|
|
if images is None and text is None: |
|
raise ValueError("You need to specify either an `images` or `text` input to process.") |
|
|
|
if images is not None: |
|
inputs = self.image_processor(images, *args, **kwargs) |
|
if text is not None: |
|
encodings = self.tokenizer(text, **kwargs) |
|
|
|
if text is None: |
|
return inputs |
|
elif images is None: |
|
return encodings |
|
else: |
|
inputs["labels"] = encodings["input_ids"] |
|
return inputs |
|
|
|
def batch_decode(self, *args, **kwargs): |
|
return self.tokenizer.batch_decode(*args, **kwargs) |
|
|
|
def decode(self, *args, **kwargs): |
|
return self.tokenizer.decode(*args, **kwargs) |
|
|
|
|
|
image_processor = ViTImageProcessor.from_pretrained( |
|
'microsoft/swin-base-patch4-window12-384-in22k' |
|
) |
|
tokenizer = MBartTokenizer.from_pretrained( |
|
'facebook/mbart-large-50' |
|
) |
|
processortext2 = CustomOCRProcessor(image_processor,tokenizer) |
|
|
|
|
|
app = FastAPI() |
|
app.mount("/static", StaticFiles(directory="static"), name="static") |
|
templates = Jinja2Templates(directory="templates") |
|
|
|
|
|
model2 = VisionEncoderDecoderModel.from_pretrained("musadac/vilanocr-single-urdu",use_auth_token=True).to(device) |
|
|
|
|
|
@app.get("/", response_class=HTMLResponse) |
|
async def root(): |
|
return templates.TemplateResponse("index.html", {"request": None}) |
|
|
|
@app.post("/upload/", response_class=HTMLResponse) |
|
async def upload_image(image: UploadFile = File(...)): |
|
|
|
img = Image.open(image.file).convert("RGB") |
|
pixel_values = processortext(img.convert("RGB"), return_tensors="pt").pixel_values |
|
|
|
|
|
with torch.no_grad(): |
|
generated_ids = model2.generate(img_tensor) |
|
|
|
|
|
result = processortext.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
return {"result": result} |
|
|