Spaces:
Sleeping
Sleeping
student-abdullah
commited on
Commit
•
8dbcc5b
1
Parent(s):
0375083
Upload 5 files
Browse files- .gitattributes +1 -0
- a.py +166 -0
- location.csv +0 -0
- requirements.txt +0 -0
- train.csv +0 -0
- unsloth.Q5_K_M.gguf +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
unsloth.Q5_K_M.gguf filter=lfs diff=lfs merge=lfs -text
|
a.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from fuzzywuzzy import process
|
4 |
+
from langchain_community.llms import LlamaCpp
|
5 |
+
from langchain_core.callbacks import StreamingStdOutCallbackHandler
|
6 |
+
from langchain_core.prompts import PromptTemplate
|
7 |
+
|
8 |
+
# Load the CSV files into DataFrames with Windows-1252 encoding
|
9 |
+
df = pd.read_csv('location.csv', encoding='Windows-1252')
|
10 |
+
df2 = pd.read_csv('train.csv')
|
11 |
+
|
12 |
+
# Initialize the LlamaCpp model
|
13 |
+
llm = LlamaCpp(
|
14 |
+
model_path="unsloth.Q5_K_M.gguf",
|
15 |
+
temperature=0.01,
|
16 |
+
max_tokens=500,
|
17 |
+
top_p=3,
|
18 |
+
callbacks=[StreamingStdOutCallbackHandler()],
|
19 |
+
verbose=False,
|
20 |
+
stop=["###"]
|
21 |
+
)
|
22 |
+
|
23 |
+
# Define the prompt template
|
24 |
+
template = """Below is an instruction that describes a task, paired with an input that provides further context. Write a lengthy detailed response that appropriately completes the request.
|
25 |
+
|
26 |
+
### Instruction:
|
27 |
+
{instruction}
|
28 |
+
|
29 |
+
### Input:
|
30 |
+
{input}
|
31 |
+
|
32 |
+
### Response:
|
33 |
+
{response}"""
|
34 |
+
|
35 |
+
prompt = PromptTemplate.from_template(template)
|
36 |
+
|
37 |
+
|
38 |
+
# Function to find the best matching context based on user input
|
39 |
+
def find_best_match(query):
|
40 |
+
questions = df2['Question'].tolist()
|
41 |
+
contexts = df2['Context'].tolist()
|
42 |
+
|
43 |
+
# Find the best match
|
44 |
+
best_match = process.extractOne(query, questions)
|
45 |
+
if best_match:
|
46 |
+
index = questions.index(best_match[0])
|
47 |
+
return contexts[index]
|
48 |
+
return "No relevant information found."
|
49 |
+
|
50 |
+
|
51 |
+
# Function to truncate response at the nearest full stop
|
52 |
+
def truncate_at_full_stop(text, max_length=500):
|
53 |
+
if len(text) <= max_length:
|
54 |
+
return text
|
55 |
+
|
56 |
+
truncated = text[:max_length]
|
57 |
+
print(f"Truncated text: {truncated}")
|
58 |
+
|
59 |
+
last_period = truncated.rfind('.')
|
60 |
+
print(f"Last period index: {last_period}")
|
61 |
+
|
62 |
+
if last_period != -1:
|
63 |
+
return truncated[:last_period + 1]
|
64 |
+
|
65 |
+
return truncated
|
66 |
+
|
67 |
+
|
68 |
+
# Initialize session state for selected service, chat history, and AI history
|
69 |
+
if 'selected_service' not in st.session_state:
|
70 |
+
st.session_state.selected_service = "Home"
|
71 |
+
if 'chat_history' not in st.session_state:
|
72 |
+
st.session_state.chat_history = []
|
73 |
+
if 'history' not in st.session_state:
|
74 |
+
st.session_state.history = []
|
75 |
+
if 'input' not in st.session_state:
|
76 |
+
st.session_state['input'] = ''
|
77 |
+
|
78 |
+
# Sidebar for selecting services
|
79 |
+
with st.sidebar:
|
80 |
+
st.title("Select the Service")
|
81 |
+
|
82 |
+
# Create buttons for each service
|
83 |
+
if st.button('Medicine Services'):
|
84 |
+
st.session_state.selected_service = "Medicine Services"
|
85 |
+
|
86 |
+
if st.button('Kendra Locator'):
|
87 |
+
st.session_state.selected_service = "Kendra Locator"
|
88 |
+
|
89 |
+
if st.button('Assistant'):
|
90 |
+
st.session_state.selected_service = "Assistant"
|
91 |
+
|
92 |
+
# Main content area based on selected service
|
93 |
+
if st.session_state.selected_service == "Home":
|
94 |
+
st.title("Welcome to Medical Service Center")
|
95 |
+
st.write("Explore the options in the sidebar to get started.")
|
96 |
+
|
97 |
+
elif st.session_state.selected_service == "Medicine Services":
|
98 |
+
st.title("Medicine Services")
|
99 |
+
|
100 |
+
# Display chat history
|
101 |
+
for chat in st.session_state.chat_history:
|
102 |
+
st.write(f"**User:** {chat['user']}")
|
103 |
+
st.write(f"**Bot:** {chat['bot']}")
|
104 |
+
|
105 |
+
# User input section
|
106 |
+
user_input = st.text_input("Enter medicine:")
|
107 |
+
|
108 |
+
# Handle input when the "Send" button is clicked
|
109 |
+
if st.button('Send'):
|
110 |
+
if user_input:
|
111 |
+
response = find_best_match(user_input)
|
112 |
+
st.session_state.chat_history.append({"user": user_input, "bot": response})
|
113 |
+
|
114 |
+
elif st.session_state.selected_service == "Kendra Locator":
|
115 |
+
st.title("Kendra Locator")
|
116 |
+
display_option = st.selectbox("Select:", ["Address", "Email"])
|
117 |
+
pin_code_input = st.text_input("Enter Pin Code:")
|
118 |
+
|
119 |
+
if st.button("Locate"):
|
120 |
+
if pin_code_input:
|
121 |
+
result = df[df['Pin'].astype(str) == pin_code_input]
|
122 |
+
if not result.empty:
|
123 |
+
if display_option == "Address":
|
124 |
+
st.write(f"Address: {result['Address'].values[0]}")
|
125 |
+
elif display_option == "Email":
|
126 |
+
st.write(f"Email: {result['Email'].values[0]}")
|
127 |
+
else:
|
128 |
+
st.write("No results found.")
|
129 |
+
else:
|
130 |
+
st.write("Please enter a pin code.")
|
131 |
+
|
132 |
+
elif st.session_state.selected_service == "Assistant":
|
133 |
+
st.title("Query Assistance")
|
134 |
+
|
135 |
+
# Display AI chat history
|
136 |
+
for chat in st.session_state.history:
|
137 |
+
st.write(f"**Medicine Query:** {chat['user']}")
|
138 |
+
st.write(f"**Chatbot:** {chat['bot']}")
|
139 |
+
|
140 |
+
|
141 |
+
# Function to handle user input
|
142 |
+
def handle_input():
|
143 |
+
user_input = st.session_state['input']
|
144 |
+
if user_input:
|
145 |
+
# Format the prompt
|
146 |
+
formatted_prompt = prompt.format(
|
147 |
+
instruction="You are an all-knowing Medical AI. Provide detailed responses to only medicine-related queries.",
|
148 |
+
input=user_input,
|
149 |
+
response="" # Leave this blank for generation!
|
150 |
+
)
|
151 |
+
|
152 |
+
# Generate response
|
153 |
+
response = llm.invoke(formatted_prompt)
|
154 |
+
|
155 |
+
# Truncate response if necessary
|
156 |
+
truncated_response = truncate_at_full_stop(response)
|
157 |
+
|
158 |
+
# Update the chat history
|
159 |
+
st.session_state.history.append({"user": user_input, "bot": truncated_response})
|
160 |
+
|
161 |
+
# Clear the input box
|
162 |
+
st.session_state['input'] = ''
|
163 |
+
|
164 |
+
|
165 |
+
# Persistent text input at the top
|
166 |
+
st.text_input("Enter Medicine Name:", key="input", on_change=handle_input)
|
location.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
Binary file (2.86 kB). View file
|
|
train.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
unsloth.Q5_K_M.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56ec872ac6e16e492c06073affb524dbc121d4b0d3d906edbbfe219231b1bfc9
|
3 |
+
size 5732987264
|