suayptalha
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,15 @@
|
|
1 |
import gradio as gr
|
2 |
from gradio_client import Client, handle_file
|
3 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
4 |
|
|
|
5 |
moondream_client = Client("vikhyatk/moondream2")
|
6 |
qwq_client = InferenceClient("Qwen/QwQ-32B-Preview")
|
7 |
|
|
|
8 |
def describe_image(image, user_message):
|
9 |
result = moondream_client.predict(
|
10 |
img=handle_file(image),
|
@@ -13,9 +18,9 @@ def describe_image(image, user_message):
|
|
13 |
)
|
14 |
|
15 |
description = result
|
16 |
-
|
17 |
user_message = description + "\n" + user_message
|
18 |
|
|
|
19 |
qwq_result = qwq_client.chat_completion(
|
20 |
messages=[{"role": "user", "content": user_message}],
|
21 |
max_tokens=512,
|
@@ -25,18 +30,61 @@ def describe_image(image, user_message):
|
|
25 |
|
26 |
return qwq_result['choices'][0]['message']['content']
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
else:
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
|
|
40 |
demo = gr.Interface(
|
41 |
fn=chat_or_image,
|
42 |
inputs=[
|
@@ -44,7 +92,10 @@ demo = gr.Interface(
|
|
44 |
gr.Textbox(label="Ask anything", placeholder="Ask...", lines=2)
|
45 |
],
|
46 |
outputs="text",
|
|
|
|
|
|
|
47 |
)
|
48 |
|
49 |
if __name__ == "__main__":
|
50 |
-
demo.launch(show_error=True)
|
|
|
1 |
import gradio as gr
|
2 |
from gradio_client import Client, handle_file
|
3 |
from huggingface_hub import InferenceClient
|
4 |
+
from PIL import Image
|
5 |
+
from threading import Thread
|
6 |
+
import time
|
7 |
|
8 |
+
# Initialize clients for Moondream and QwQ
|
9 |
moondream_client = Client("vikhyatk/moondream2")
|
10 |
qwq_client = InferenceClient("Qwen/QwQ-32B-Preview")
|
11 |
|
12 |
+
# Function to describe the image using Moondream API
|
13 |
def describe_image(image, user_message):
|
14 |
result = moondream_client.predict(
|
15 |
img=handle_file(image),
|
|
|
18 |
)
|
19 |
|
20 |
description = result
|
|
|
21 |
user_message = description + "\n" + user_message
|
22 |
|
23 |
+
# Using QwQ model for conversation after description
|
24 |
qwq_result = qwq_client.chat_completion(
|
25 |
messages=[{"role": "user", "content": user_message}],
|
26 |
max_tokens=512,
|
|
|
30 |
|
31 |
return qwq_result['choices'][0]['message']['content']
|
32 |
|
33 |
+
# Function to handle chat or image-based conversation
|
34 |
+
def chat_or_image(message, history, max_new_tokens=250):
|
35 |
+
txt = message["text"]
|
36 |
+
ext_buffer = f"{txt}"
|
37 |
+
|
38 |
+
messages = []
|
39 |
+
images = []
|
40 |
+
|
41 |
+
# Process the conversation history
|
42 |
+
for i, msg in enumerate(history):
|
43 |
+
if isinstance(msg[0], tuple):
|
44 |
+
messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
|
45 |
+
messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
|
46 |
+
images.append(Image.open(msg[0][0]).convert("RGB"))
|
47 |
+
elif isinstance(msg[0], str) and isinstance(history[i-1][0], str): # text only turn
|
48 |
+
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
|
49 |
+
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
|
50 |
+
|
51 |
+
# Add current message
|
52 |
+
if len(message["files"]) == 1:
|
53 |
+
if isinstance(message["files"][0], str): # Example images
|
54 |
+
image = Image.open(message["files"][0]).convert("RGB")
|
55 |
+
else: # Regular image input
|
56 |
+
image = Image.open(message["files"][0]["path"]).convert("RGB")
|
57 |
+
images.append(image)
|
58 |
+
messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
|
59 |
else:
|
60 |
+
messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
|
61 |
+
|
62 |
+
# Processing the conversation to send to the model
|
63 |
+
texts = moondream_client.apply_chat_template(messages, add_generation_prompt=True)
|
64 |
+
|
65 |
+
if images == []:
|
66 |
+
inputs = moondream_client(text=texts, return_tensors="pt").to("cuda")
|
67 |
+
else:
|
68 |
+
inputs = moondream_client(text=texts, images=images, return_tensors="pt").to("cuda")
|
69 |
+
|
70 |
+
streamer = TextIteratorStreamer(moondream_client, skip_special_tokens=True, skip_prompt=True)
|
71 |
+
|
72 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
|
73 |
+
generated_text = ""
|
74 |
+
|
75 |
+
# Generating the response with threading to avoid blocking
|
76 |
+
thread = Thread(target=qwq_client.chat_completion, kwargs=generation_kwargs)
|
77 |
+
thread.start()
|
78 |
+
buffer = ""
|
79 |
+
|
80 |
+
# Stream the generated text
|
81 |
+
for new_text in streamer:
|
82 |
+
buffer += new_text
|
83 |
+
generated_text_without_prompt = buffer
|
84 |
+
time.sleep(0.01)
|
85 |
+
yield buffer
|
86 |
|
87 |
+
# Gradio Interface setup
|
88 |
demo = gr.Interface(
|
89 |
fn=chat_or_image,
|
90 |
inputs=[
|
|
|
92 |
gr.Textbox(label="Ask anything", placeholder="Ask...", lines=2)
|
93 |
],
|
94 |
outputs="text",
|
95 |
+
title="Multimodal Llama Chatbot",
|
96 |
+
description="Interact with the Llama chatbot. Upload an image, ask a question, or both!",
|
97 |
+
live=True
|
98 |
)
|
99 |
|
100 |
if __name__ == "__main__":
|
101 |
+
demo.launch(show_error=True)
|