File size: 9,825 Bytes
26e5c1d bf58072 26e5c1d bf58072 26e5c1d 5c11e48 26e5c1d 5c11e48 26e5c1d 5c11e48 26e5c1d 5c11e48 26e5c1d 5c11e48 26e5c1d 5c11e48 26e5c1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import gc
import laspy
import torch
import tempfile
import numpy as np
import open3d as o3d
import streamlit as st
import plotly.graph_objs as go
import pointnet2_cls_msg as pn2
from utils import calculate_dbh, calc_canopy_volume, CLASSES
from SingleTreePointCloudLoader import SingleTreePointCloudLoader
gc.enable()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
with st.spinner("Loading PointNet++ model..."):
checkpoint = torch.load('checkpoints/best_model.pth', map_location=torch.device(device))
classifier = pn2.get_model(num_class=4, normal_channel=False)
classifier.load_state_dict(checkpoint['model_state_dict'])
classifier.eval()
st.sidebar.markdown(
body=
"<div style='text-align: justify;'>The species <strong>Pinus sylvestris "
"(Scots Pine), Fagus sylvatica (European Beech), Picea abies (Norway Spruce), "
"and Betula pendula (Silver Birch)</strong> are native to Europe and parts "
"of Asia but are also found in India (Parts of Himachal Pradesh, "
"Uttarakhand, Jammu and Kashmir, Sikkim and Arunachal Pradesh). "
"These temperate species, typically thriving in boreal and montane ecosystems, "
"are occasionally introduced in cooler Indian regions like the Himalayan "
"foothills for afforestation or experimental forestry, where climatic "
"conditions are favourable. However, their growth and ecological interactions "
"in India may vary significantly due to the region's unique biodiversity "
"and environmental factors.<br><br>"
"This AI-powered application employs the PointNet++ deep learning "
"architecture, optimized for processing 3D point cloud data from "
"individual <code>.laz</code> files (fused aerial and terrestrial LiDAR) "
"to classify tree species up to four classes (<strong>Pinus sylvestris, "
"Fagus sylvatica, Picea abies, and Betula pendula</strong>) "
"with associated confidence scores. Additionally, it calculates critical "
"metrics such as Diameter at Breast Height (DBH), actual height and "
"customizable canopy volume, enabling precise refinement of predictions "
"and analyses. By integrating species-specific and volumetric insights, "
"the tool enhances ecological research workflows, facilitating data-driven "
"decision-making.</div>"
,
unsafe_allow_html=True,
)
st.markdown(
"""
<style>
[data-testid="stSidebar"] {
background-image: url("static/sidebar.png");
background-size: cover;
background-position: center;
}
</style>
""",
unsafe_allow_html=True
)
st.header("ArborSphere")
st.subheader("Tree Identity and Biometrics")
uploaded_file = st.file_uploader(
label="Upload Point Cloud Data",
type=['laz', 'las', 'pcd'],
help="Please upload trees with ground points removed"
)
col1, col2 = st.columns([2, 2])
with col1:
st.image("static/canopy_info.jpg")
with col2:
CANOPY_VOLUME = st.slider(
label="Canopy Volume in % (Z)",
min_value=10,
max_value=90,
value=70,
step=1,
help=
"Adjust the Z-threshold value to calculate the canopy volume "
"within specified limits, it uses Quickhull and DBSCAN algorithms. "
"The Quickhull algorithm computes the convex hull of a set of points "
"by identifying extreme points to form an initial boundary and recursively "
"refining it by adding the farthest points until all points lie within the "
"convex boundary. It uses a divide-and-conquer approach, similar to QuickSort. "
"DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a "
"density-based clustering algorithm that groups densely packed points within "
"a specified distance 'eps' and minimum points 'minpoints', while treating "
"sparse points as noise. It effectively identifies arbitrarily shaped clusters "
"and handles outliers, making it suitable for spatial data and anomaly detection."
)
col1, col2 = st.columns([2, 2])
with col1:
st.image("static/DBH_info.jpg")
with col2:
DBH_HEIGHT = st.slider(
label="DBH (Diameter above Breast Height, in metres) (H)",
min_value=1.3,
max_value=1.4,
value=1.4,
step=0.01,
help=
"Adjust to calculate the DBH value within specified limits, "
"it utilizes Least square circle fitting method Levenberg-Marquardt "
"optimization technique."
"The Least Squares Circle Fitting method is used to find the "
"best-fitting circle to a set of 2D points by minimizing the sum of "
"squared distances between each point and the circle's circumference."
"Levenberg-Marquardt Optimization is used to fit models (like circles) "
"to point cloud data by minimizing the error between the model and the "
"actual points."
)
proceed = None
if uploaded_file:
try:
with st.spinner("Reading point cloud file..."):
file_type = uploaded_file.name.split('.')[-1].lower()
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{uploaded_file.name.split('.')[-1]}") as tmp:
tmp.write(uploaded_file.read())
temp_file_path = tmp.name
if file_type == 'pcd':
pcd = o3d.io.read_point_cloud(temp_file_path)
points = np.asarray(pcd.points)
else:
point_cloud = laspy.read(temp_file_path)
points = np.vstack((point_cloud.x, point_cloud.y, point_cloud.z)).transpose()
proceed = st.button("Run model")
except Exception as e:
st.error(f"An error occured: {str(e)}")
if proceed:
try:
with st.spinner("Calculating tree inventory..."):
dbh, trunk_points = calculate_dbh(points, DBH_HEIGHT)
z_min = np.min(points[:, 2])
z_max = np.max(points[:, 2])
height = z_max - z_min
canopy_volume, canopy_points = calc_canopy_volume(points, CANOPY_VOLUME, height, z_min)
with st.spinner("Visualizing point cloud..."):
fig = go.Figure()
fig.add_trace(go.Scatter3d(
x=points[:, 0],
y=points[:, 1],
z=points[:, 2],
mode='markers',
marker=dict(
size=0.5,
color=points[:, 2],
colorscale='Viridis',
opacity=1.0,
),
name='Tree'
))
fig.add_trace(go.Scatter3d(
x=canopy_points[:, 0],
y=canopy_points[:, 1],
z=canopy_points[:, 2],
mode='markers',
marker=dict(
size=2,
color='blue',
opacity=0.8,
),
name='Canopy points'
))
fig.add_trace(go.Scatter3d(
x=trunk_points[:, 0],
y=trunk_points[:, 1],
z=trunk_points[:, 2],
mode='markers',
marker=dict(
size=2,
color='red',
opacity=0.9,
),
name='DBH'
))
fig.update_layout(
margin=dict(l=0, r=0, b=0, t=0),
scene=dict(
xaxis_title="X",
yaxis_title="Y",
zaxis_title="Z",
aspectmode='data'
),
showlegend=False
)
col1, col2, col3 = st.columns([1, 3, 1])
with col2:
st.markdown("""
<style>
.centered-plot {
text-align: center;
}
</style>
""", unsafe_allow_html=True)
st.plotly_chart(fig, use_container_width=True)
hide_st_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
header {visibility: hidden;}
</style>
"""
st.markdown(hide_st_style, unsafe_allow_html=True)
with st.spinner("Running inference..."):
testFile = SingleTreePointCloudLoader(temp_file_path, file_type)
testFileLoader = torch.utils.data.DataLoader(testFile, batch_size=8, shuffle=False, num_workers=0)
point_set, _ = next(iter(testFileLoader))
point_set = point_set.transpose(2, 1)
with torch.no_grad():
logits, _ = classifier(point_set)
probabilities = torch.softmax(logits, dim=-1)
predicted_class = torch.argmax(probabilities, dim=-1).item()
confidence_score = (probabilities.numpy().tolist())[0][predicted_class] * 100
predicted_label = CLASSES[predicted_class]
st.write(f"**Predicted class: {predicted_label}**")
# st.write(f"Class Probabilities: {probabilities.numpy().tolist()}")
st.write(f"**Confidence score: {confidence_score:.2f}%**")
st.write(f"**Height of tree: {height:.2f}m**")
st.write(f"**Canopy volume: {canopy_volume:.2f}m\u00b3**")
st.write(f"**DBH: {dbh:.2f}m**")
except Exception as e:
st.error(f"An error occured: {str(e)}")
|