Leetmonkey In Action via Inference
Browse files
app.py
CHANGED
@@ -3,17 +3,14 @@ import re
|
|
3 |
import logging
|
4 |
import textwrap
|
5 |
import autopep8
|
6 |
-
import gradio as gr
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
from llama_cpp import Llama
|
9 |
import jwt
|
10 |
-
from typing import
|
11 |
from fastapi import FastAPI, HTTPException, Depends
|
12 |
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
13 |
from pydantic import BaseModel
|
14 |
-
import
|
15 |
-
import torch
|
16 |
-
from threading import Thread
|
17 |
|
18 |
# Set up logging
|
19 |
logging.basicConfig(level=logging.INFO)
|
@@ -54,21 +51,15 @@ def download_model(model_name: str) -> str:
|
|
54 |
|
55 |
# Download and load the 8-bit model at startup
|
56 |
model_path = download_model(MODEL_NAME)
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
n_gpu_layers=-1, # Use all available GPU layers
|
65 |
-
verbose=False
|
66 |
-
)
|
67 |
-
|
68 |
-
llm = load_model(model_path)
|
69 |
logger.info("8-bit model loaded successfully")
|
70 |
|
71 |
-
@spaces.GPU
|
72 |
def generate_solution(instruction: str) -> str:
|
73 |
system_prompt = "You are a Python coding assistant specialized in solving LeetCode problems. Provide only the complete implementation of the given function. Ensure proper indentation and formatting. Do not include any explanations or multiple solutions."
|
74 |
full_prompt = f"""### Instruction:
|
@@ -145,7 +136,7 @@ async def generate_solution_api(request: ProblemRequest, authorized: bool = Depe
|
|
145 |
|
146 |
@app.post("/stream_solution")
|
147 |
async def stream_solution_api(request: ProblemRequest, authorized: bool = Depends(verify_token)):
|
148 |
-
async def generate():
|
149 |
logger.info("Streaming solution")
|
150 |
system_prompt = "You are a Python coding assistant specialized in solving LeetCode problems. Provide only the complete implementation of the given function. Ensure proper indentation and formatting. Do not include any explanations or multiple solutions."
|
151 |
full_prompt = f"""### Instruction:
|
@@ -163,7 +154,7 @@ Here's the complete Python function implementation:
|
|
163 |
|
164 |
generated_text = ""
|
165 |
for chunk in llm(full_prompt, stream=True, **generation_kwargs):
|
166 |
-
token = chunk["choices"]["text"]
|
167 |
generated_text += token
|
168 |
yield token
|
169 |
|
@@ -171,50 +162,8 @@ Here's the complete Python function implementation:
|
|
171 |
logger.info("Solution generated successfully")
|
172 |
yield formatted_code
|
173 |
|
174 |
-
return generate()
|
175 |
-
|
176 |
-
# Gradio wrapper for FastAPI
|
177 |
-
def gradio_wrapper(app):
|
178 |
-
def inference(instruction, token):
|
179 |
-
import requests
|
180 |
-
url = "http://localhost:8000/generate_solution"
|
181 |
-
headers = {"Authorization": f"Bearer {token}"}
|
182 |
-
response = requests.post(url, json={"instruction": instruction}, headers=headers)
|
183 |
-
if response.status_code == 200:
|
184 |
-
return response.json()["solution"]
|
185 |
-
else:
|
186 |
-
return f"Error: {response.status_code}, {response.text}"
|
187 |
-
|
188 |
-
iface = gr.Interface(
|
189 |
-
fn=inference,
|
190 |
-
inputs=[
|
191 |
-
gr.Textbox(label="LeetCode Problem Instruction"),
|
192 |
-
gr.Textbox(label="JWT Token")
|
193 |
-
],
|
194 |
-
outputs=gr.Code(label="Generated Solution"),
|
195 |
-
title="LeetCode Problem Solver API",
|
196 |
-
description="Enter a LeetCode problem instruction and your JWT token to generate a solution."
|
197 |
-
)
|
198 |
-
return iface
|
199 |
-
|
200 |
-
@spaces.GPU
|
201 |
-
def main():
|
202 |
-
# Verify GPU availability
|
203 |
-
zero = torch.Tensor().cuda()
|
204 |
-
print(f"GPU availability: {zero.device}")
|
205 |
-
|
206 |
-
# Download and load the model
|
207 |
-
model_path = download_model(MODEL_NAME)
|
208 |
-
global llm
|
209 |
-
llm = load_model(model_path)
|
210 |
-
logger.info("8-bit model loaded successfully")
|
211 |
-
|
212 |
-
# Start FastAPI in a separate thread
|
213 |
-
Thread(target=lambda: uvicorn.run(app, host="0.0.0.0", port=8000)).start()
|
214 |
-
|
215 |
-
# Launch Gradio interface
|
216 |
-
iface = gradio_wrapper(app)
|
217 |
-
iface.launch(share=True)
|
218 |
|
219 |
if __name__ == "__main__":
|
220 |
-
|
|
|
|
3 |
import logging
|
4 |
import textwrap
|
5 |
import autopep8
|
|
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
from llama_cpp import Llama
|
8 |
import jwt
|
9 |
+
from typing import AsyncGenerator
|
10 |
from fastapi import FastAPI, HTTPException, Depends
|
11 |
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
12 |
from pydantic import BaseModel
|
13 |
+
from fastapi.responses import StreamingResponse
|
|
|
|
|
14 |
|
15 |
# Set up logging
|
16 |
logging.basicConfig(level=logging.INFO)
|
|
|
51 |
|
52 |
# Download and load the 8-bit model at startup
|
53 |
model_path = download_model(MODEL_NAME)
|
54 |
+
llm = Llama(
|
55 |
+
model_path=model_path,
|
56 |
+
n_ctx=2048,
|
57 |
+
n_threads=4,
|
58 |
+
n_gpu_layers=-1, # Use all available GPU layers
|
59 |
+
verbose=False
|
60 |
+
)
|
|
|
|
|
|
|
|
|
|
|
61 |
logger.info("8-bit model loaded successfully")
|
62 |
|
|
|
63 |
def generate_solution(instruction: str) -> str:
|
64 |
system_prompt = "You are a Python coding assistant specialized in solving LeetCode problems. Provide only the complete implementation of the given function. Ensure proper indentation and formatting. Do not include any explanations or multiple solutions."
|
65 |
full_prompt = f"""### Instruction:
|
|
|
136 |
|
137 |
@app.post("/stream_solution")
|
138 |
async def stream_solution_api(request: ProblemRequest, authorized: bool = Depends(verify_token)):
|
139 |
+
async def generate() -> AsyncGenerator[str, None]:
|
140 |
logger.info("Streaming solution")
|
141 |
system_prompt = "You are a Python coding assistant specialized in solving LeetCode problems. Provide only the complete implementation of the given function. Ensure proper indentation and formatting. Do not include any explanations or multiple solutions."
|
142 |
full_prompt = f"""### Instruction:
|
|
|
154 |
|
155 |
generated_text = ""
|
156 |
for chunk in llm(full_prompt, stream=True, **generation_kwargs):
|
157 |
+
token = chunk["choices"][0]["text"]
|
158 |
generated_text += token
|
159 |
yield token
|
160 |
|
|
|
162 |
logger.info("Solution generated successfully")
|
163 |
yield formatted_code
|
164 |
|
165 |
+
return StreamingResponse(generate(), media_type="text/plain")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
if __name__ == "__main__":
|
168 |
+
import uvicorn
|
169 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|