Leetmonkey In Action via Inference
Browse files- app.py +112 -68
- requirements.txt +3 -5
app.py
CHANGED
@@ -1,43 +1,30 @@
|
|
1 |
-
import os
|
2 |
-
import re
|
3 |
-
import logging
|
4 |
-
import textwrap
|
5 |
-
import autopep8
|
6 |
import gradio as gr
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
from llama_cpp import Llama
|
9 |
-
import
|
10 |
-
from
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Set up logging
|
13 |
logging.basicConfig(level=logging.INFO)
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
# Model settings
|
23 |
-
MODEL_NAME = "leetmonkey_peft__q8_0.gguf"
|
24 |
-
REPO_ID = "sugiv/leetmonkey-peft-gguf"
|
25 |
-
|
26 |
-
# Generation parameters
|
27 |
-
generation_kwargs = {
|
28 |
-
"max_tokens": 2048,
|
29 |
-
"stop": ["```", "### Instruction:", "### Response:"],
|
30 |
-
"echo": False,
|
31 |
-
"temperature": 0.2,
|
32 |
-
"top_k": 50,
|
33 |
-
"top_p": 0.95,
|
34 |
-
"repeat_penalty": 1.1
|
35 |
}
|
36 |
|
37 |
-
def download_model(model_name
|
38 |
logger.info(f"Downloading model: {model_name}")
|
39 |
model_path = hf_hub_download(
|
40 |
-
repo_id=
|
41 |
filename=model_name,
|
42 |
cache_dir="./models",
|
43 |
force_download=True,
|
@@ -47,17 +34,32 @@ def download_model(model_name: str) -> str:
|
|
47 |
return model_path
|
48 |
|
49 |
# Download and load the 8-bit model at startup
|
50 |
-
|
51 |
llm = Llama(
|
52 |
-
model_path=
|
53 |
n_ctx=2048,
|
54 |
n_threads=4,
|
55 |
-
n_gpu_layers
|
56 |
verbose=False
|
57 |
)
|
58 |
logger.info("8-bit model loaded successfully")
|
59 |
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
system_prompt = "You are a Python coding assistant specialized in solving LeetCode problems. Provide only the complete implementation of the given function. Ensure proper indentation and formatting. Do not include any explanations or multiple solutions."
|
62 |
full_prompt = f"""### Instruction:
|
63 |
{system_prompt}
|
@@ -72,26 +74,36 @@ Here's the complete Python function implementation:
|
|
72 |
```python
|
73 |
"""
|
74 |
|
75 |
-
response =
|
76 |
return response["choices"][0]["text"]
|
77 |
|
78 |
-
def extract_and_format_code(text
|
|
|
79 |
code_match = re.search(r'```python\s*(.*?)\s*```', text, re.DOTALL)
|
80 |
if code_match:
|
81 |
code = code_match.group(1)
|
82 |
else:
|
83 |
code = text
|
84 |
|
|
|
85 |
code = re.sub(r'^.*?(?=def\s+\w+\s*\()', '', code, flags=re.DOTALL)
|
|
|
|
|
86 |
code = textwrap.dedent(code)
|
|
|
|
|
87 |
lines = code.split('\n')
|
|
|
|
|
88 |
func_def_index = next((i for i, line in enumerate(lines) if line.strip().startswith('def ')), 0)
|
89 |
-
|
|
|
|
|
90 |
for line in lines[func_def_index + 1:]:
|
91 |
-
if line.strip():
|
92 |
-
indented_lines.append(' ' + line)
|
93 |
else:
|
94 |
-
indented_lines.append(line)
|
95 |
|
96 |
formatted_code = '\n'.join(indented_lines)
|
97 |
|
@@ -100,38 +112,70 @@ def extract_and_format_code(text: str) -> str:
|
|
100 |
except:
|
101 |
return formatted_code
|
102 |
|
103 |
-
def
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
return {"error": "Invalid token"}
|
113 |
|
114 |
-
logger.info("Generating solution")
|
115 |
-
generated_output = generate_solution(
|
116 |
formatted_code = extract_and_format_code(generated_output)
|
117 |
logger.info("Solution generated successfully")
|
118 |
-
return
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
if __name__ == "__main__":
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import hf_hub_download
|
3 |
from llama_cpp import Llama
|
4 |
+
import re
|
5 |
+
from datasets import load_dataset
|
6 |
+
import random
|
7 |
+
import logging
|
8 |
+
import os
|
9 |
+
import autopep8
|
10 |
+
import textwrap
|
11 |
|
12 |
# Set up logging
|
13 |
logging.basicConfig(level=logging.INFO)
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
+
# Define the model options
|
17 |
+
gguf_models = {
|
18 |
+
"Q8_0 (8-bit)": "leetmonkey_peft__q8_0.gguf",
|
19 |
+
"Exact Copy": "leetmonkey_peft_exact_copy.gguf",
|
20 |
+
"F16": "leetmonkey_peft_f16.gguf",
|
21 |
+
"Super Block Q6": "leetmonkey_peft_super_block_q6.gguf"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
}
|
23 |
|
24 |
+
def download_model(model_name):
|
25 |
logger.info(f"Downloading model: {model_name}")
|
26 |
model_path = hf_hub_download(
|
27 |
+
repo_id="sugiv/leetmonkey-peft-gguf",
|
28 |
filename=model_name,
|
29 |
cache_dir="./models",
|
30 |
force_download=True,
|
|
|
34 |
return model_path
|
35 |
|
36 |
# Download and load the 8-bit model at startup
|
37 |
+
q8_model_path = download_model(gguf_models["Q8_0 (8-bit)"])
|
38 |
llm = Llama(
|
39 |
+
model_path=q8_model_path,
|
40 |
n_ctx=2048,
|
41 |
n_threads=4,
|
42 |
+
n_gpu_layers=0,
|
43 |
verbose=False
|
44 |
)
|
45 |
logger.info("8-bit model loaded successfully")
|
46 |
|
47 |
+
# Load the dataset
|
48 |
+
dataset = load_dataset("sugiv/leetmonkey_python_dataset")
|
49 |
+
train_dataset = dataset["train"]
|
50 |
+
|
51 |
+
# Generation parameters
|
52 |
+
generation_kwargs = {
|
53 |
+
"max_tokens": 2048,
|
54 |
+
"stop": ["```", "### Instruction:", "### Response:"],
|
55 |
+
"echo": False,
|
56 |
+
"temperature": 0.2,
|
57 |
+
"top_k": 50,
|
58 |
+
"top_p": 0.95,
|
59 |
+
"repeat_penalty": 1.1
|
60 |
+
}
|
61 |
+
|
62 |
+
def generate_solution(instruction, model):
|
63 |
system_prompt = "You are a Python coding assistant specialized in solving LeetCode problems. Provide only the complete implementation of the given function. Ensure proper indentation and formatting. Do not include any explanations or multiple solutions."
|
64 |
full_prompt = f"""### Instruction:
|
65 |
{system_prompt}
|
|
|
74 |
```python
|
75 |
"""
|
76 |
|
77 |
+
response = model(full_prompt, **generation_kwargs)
|
78 |
return response["choices"][0]["text"]
|
79 |
|
80 |
+
def extract_and_format_code(text):
|
81 |
+
# Extract code between triple backticks
|
82 |
code_match = re.search(r'```python\s*(.*?)\s*```', text, re.DOTALL)
|
83 |
if code_match:
|
84 |
code = code_match.group(1)
|
85 |
else:
|
86 |
code = text
|
87 |
|
88 |
+
# Remove any text before the function definition
|
89 |
code = re.sub(r'^.*?(?=def\s+\w+\s*\()', '', code, flags=re.DOTALL)
|
90 |
+
|
91 |
+
# Dedent the code to remove any common leading whitespace
|
92 |
code = textwrap.dedent(code)
|
93 |
+
|
94 |
+
# Split the code into lines
|
95 |
lines = code.split('\n')
|
96 |
+
|
97 |
+
# Find the function definition line
|
98 |
func_def_index = next((i for i, line in enumerate(lines) if line.strip().startswith('def ')), 0)
|
99 |
+
|
100 |
+
# Ensure proper indentation
|
101 |
+
indented_lines = [lines[func_def_index]] # Keep the function definition as is
|
102 |
for line in lines[func_def_index + 1:]:
|
103 |
+
if line.strip(): # If the line is not empty
|
104 |
+
indented_lines.append(' ' + line) # Add 4 spaces of indentation
|
105 |
else:
|
106 |
+
indented_lines.append(line) # Keep empty lines as is
|
107 |
|
108 |
formatted_code = '\n'.join(indented_lines)
|
109 |
|
|
|
112 |
except:
|
113 |
return formatted_code
|
114 |
|
115 |
+
def select_random_problem():
|
116 |
+
return random.choice(train_dataset)['instruction']
|
117 |
+
|
118 |
+
def update_solution(problem, model_name):
|
119 |
+
if model_name == "Q8_0 (8-bit)":
|
120 |
+
model = llm
|
121 |
+
else:
|
122 |
+
model_path = download_model(gguf_models[model_name])
|
123 |
+
model = Llama(model_path=model_path, n_ctx=2048, n_threads=4, n_gpu_layers=0, verbose=False)
|
|
|
124 |
|
125 |
+
logger.info(f"Generating solution using {model_name} model")
|
126 |
+
generated_output = generate_solution(problem, model)
|
127 |
formatted_code = extract_and_format_code(generated_output)
|
128 |
logger.info("Solution generated successfully")
|
129 |
+
return formatted_code
|
130 |
+
|
131 |
+
def stream_solution(problem, model_name):
|
132 |
+
if model_name == "Q8_0 (8-bit)":
|
133 |
+
model = llm
|
134 |
+
else:
|
135 |
+
model_path = download_model(gguf_models[model_name])
|
136 |
+
model = Llama(model_path=model_path, n_ctx=2048, n_threads=4, n_gpu_layers=0, verbose=False)
|
137 |
+
|
138 |
+
logger.info(f"Generating solution using {model_name} model")
|
139 |
+
system_prompt = "You are a Python coding assistant specialized in solving LeetCode problems. Provide only the complete implementation of the given function. Ensure proper indentation and formatting. Do not include any explanations or multiple solutions."
|
140 |
+
full_prompt = f"""### Instruction:
|
141 |
+
{system_prompt}
|
142 |
+
|
143 |
+
Implement the following function for the LeetCode problem:
|
144 |
+
|
145 |
+
{problem}
|
146 |
+
|
147 |
+
### Response:
|
148 |
+
Here's the complete Python function implementation:
|
149 |
+
|
150 |
+
```python
|
151 |
+
"""
|
152 |
+
|
153 |
+
generated_text = ""
|
154 |
+
for chunk in model(full_prompt, stream=True, **generation_kwargs):
|
155 |
+
token = chunk["choices"][0]["text"]
|
156 |
+
generated_text += token
|
157 |
+
yield generated_text
|
158 |
+
|
159 |
+
formatted_code = extract_and_format_code(generated_text)
|
160 |
+
logger.info("Solution generated successfully")
|
161 |
+
yield formatted_code
|
162 |
+
|
163 |
+
with gr.Blocks() as demo:
|
164 |
+
gr.Markdown("# LeetCode Problem Solver")
|
165 |
+
|
166 |
+
with gr.Row():
|
167 |
+
with gr.Column():
|
168 |
+
problem_display = gr.Textbox(label="LeetCode Problem", lines=10)
|
169 |
+
select_problem_btn = gr.Button("Select Random Problem")
|
170 |
+
|
171 |
+
with gr.Column():
|
172 |
+
model_dropdown = gr.Dropdown(choices=list(gguf_models.keys()), label="Select GGUF Model", value="Q8_0 (8-bit)")
|
173 |
+
solution_display = gr.Code(label="Generated Solution", language="python", lines=25)
|
174 |
+
generate_btn = gr.Button("Generate Solution")
|
175 |
+
|
176 |
+
select_problem_btn.click(select_random_problem, outputs=problem_display)
|
177 |
+
generate_btn.click(stream_solution, inputs=[problem_display, model_dropdown], outputs=solution_display)
|
178 |
|
179 |
if __name__ == "__main__":
|
180 |
+
logger.info("Starting Gradio interface")
|
181 |
+
demo.launch(share=True)
|
requirements.txt
CHANGED
@@ -1,8 +1,6 @@
|
|
1 |
gradio
|
2 |
llama-cpp-python
|
3 |
-
|
4 |
-
|
5 |
autopep8
|
6 |
-
|
7 |
-
uvicorn
|
8 |
-
pydantic
|
|
|
1 |
gradio
|
2 |
llama-cpp-python
|
3 |
+
datasets
|
4 |
+
transformers
|
5 |
autopep8
|
6 |
+
huggingface_hub
|
|
|
|