import gradio as gr from huggingface_hub import hf_hub_download from llama_cpp import Llama import re from datasets import load_dataset import random import logging import os import autopep8 import textwrap # Set up logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Model settings MODEL_NAME = "leetmonkey_peft__q8_0.gguf" REPO_ID = "sugiv/leetmonkey-peft-gguf" def download_model(model_name): logger.info(f"Downloading model: {model_name}") model_path = hf_hub_download( repo_id=REPO_ID, filename=model_name, cache_dir="./models", force_download=True, resume_download=True ) logger.info(f"Model downloaded: {model_path}") return model_path # Download and load the 8-bit model at startup model_path = download_model(MODEL_NAME) llm = Llama( model_path=model_path, n_ctx=1024, n_threads=8, n_gpu_layers=-1, # Use all available GPU layers verbose=False, n_batch=512, mlock=True ) logger.info("8-bit model loaded successfully") # Load the dataset dataset = load_dataset("sugiv/leetmonkey_python_dataset") train_dataset = dataset["train"] # Generation parameters generation_kwargs = { "max_tokens": 512, "stop": ["```", "### Instruction:", "### Response:"], "echo": False, "temperature": 0.05, "top_k": 10, "top_p": 0.9, "repeat_penalty": 1.1 } def generate_solution(instruction): system_prompt = "You are a Python coding assistant specialized in solving LeetCode problems. Provide only the complete implementation of the given function. Ensure proper indentation and formatting. Do not include any explanations or multiple solutions." full_prompt = f"""### Instruction: {system_prompt} Implement the following function for the LeetCode problem: {instruction} ### Response: Here's the complete Python function implementation: ```python """ for chunk in llm(full_prompt, stream=True, **generation_kwargs): yield chunk["choices"][0]["text"] def extract_and_format_code(text): # Extract code between triple backticks code_match = re.search(r'```python\s*(.*?)\s*```', text, re.DOTALL) if code_match: code = code_match.group(1) else: code = text # Dedent the code to remove any common leading whitespace code = textwrap.dedent(code) # Split the code into lines lines = code.split('\n') # Ensure proper indentation indented_lines = [] for line in lines: if line.strip().startswith('class') or line.strip().startswith('def'): indented_lines.append(line) # Keep class and function definitions as is elif line.strip(): # If the line is not empty indented_lines.append(' ' + line) # Add 4 spaces of indentation else: indented_lines.append(line) # Keep empty lines as is formatted_code = '\n'.join(indented_lines) try: return autopep8.fix_code(formatted_code) except: return formatted_code def select_random_problem(): return random.choice(train_dataset)['instruction'] def stream_solution(problem): logger.info("Generating solution") generated_text = "" for token in generate_solution(problem): generated_text += token yield generated_text formatted_code = extract_and_format_code(generated_text) logger.info("Solution generated successfully") yield formatted_code with gr.Blocks() as demo: gr.Markdown("# LeetCode Problem Solver (8-bit GGUF Model)") with gr.Row(): with gr.Column(): problem_display = gr.Textbox(label="LeetCode Problem", lines=10) select_problem_btn = gr.Button("Select Random Problem") with gr.Column(): solution_display = gr.Code(label="Generated Solution", language="python", lines=25) generate_btn = gr.Button("Generate Solution") select_problem_btn.click(select_random_problem, outputs=problem_display) generate_btn.click(stream_solution, inputs=[problem_display], outputs=solution_display) if __name__ == "__main__": logger.info("Starting Gradio interface") demo.launch(share=True)