Spaces:
Sleeping
Sleeping
Leetmonkey In Action. Darn LeetMonkey these days
Browse files- app.py +56 -58
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,30 +1,29 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from llama_cpp import Llama
|
3 |
import re
|
4 |
from datasets import load_dataset
|
5 |
-
from transformers import AutoTokenizer
|
6 |
-
import autopep8
|
7 |
import random
|
|
|
8 |
import textwrap
|
9 |
|
10 |
-
#
|
11 |
-
dataset = load_dataset("sugiv/leetmonkey_python_dataset")
|
12 |
-
val_dataset = dataset["train"].train_test_split(test_size=0.1)["test"]
|
13 |
-
|
14 |
-
# Load the tokenizer
|
15 |
-
tokenizer = AutoTokenizer.from_pretrained("sugiv/Leetmonkey-peft")
|
16 |
-
|
17 |
-
# GGUF model options
|
18 |
gguf_models = {
|
19 |
-
"Exact Copy": "
|
20 |
-
"F16": "
|
21 |
-
"Q8_0": "
|
22 |
-
"Super Block Q6": "
|
23 |
}
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
generation_kwargs = {
|
26 |
"max_tokens": 2048,
|
27 |
-
"stop": ["
|
28 |
"echo": False,
|
29 |
"temperature": 0.2,
|
30 |
"top_k": 50,
|
@@ -32,15 +31,7 @@ generation_kwargs = {
|
|
32 |
"repeat_penalty": 1.1
|
33 |
}
|
34 |
|
35 |
-
def
|
36 |
-
llm = Llama(
|
37 |
-
model_path=model_path,
|
38 |
-
n_ctx=2048,
|
39 |
-
n_threads=4,
|
40 |
-
n_gpu_layers=0,
|
41 |
-
verbose=False
|
42 |
-
)
|
43 |
-
|
44 |
system_prompt = "You are a Python coding assistant specialized in solving LeetCode problems. Provide only the complete implementation of the given function. Ensure proper indentation and formatting. Do not include any explanations or multiple solutions."
|
45 |
full_prompt = f"""<|begin▁of▁sentence|>
|
46 |
### Instruction:
|
@@ -56,26 +47,36 @@ Here's the complete Python function implementation:
|
|
56 |
```python
|
57 |
"""
|
58 |
|
59 |
-
|
60 |
-
return
|
61 |
|
62 |
def extract_and_format_code(text):
|
|
|
63 |
code_match = re.search(r'```python\s*(.*?)\s*```', text, re.DOTALL)
|
64 |
if code_match:
|
65 |
code = code_match.group(1)
|
66 |
else:
|
67 |
code = text
|
68 |
|
|
|
69 |
code = re.sub(r'^.*?(?=def\s+\w+\s*\()', '', code, flags=re.DOTALL)
|
|
|
|
|
70 |
code = textwrap.dedent(code)
|
|
|
|
|
71 |
lines = code.split('\n')
|
|
|
|
|
72 |
func_def_index = next((i for i, line in enumerate(lines) if line.strip().startswith('def ')), 0)
|
73 |
-
|
|
|
|
|
74 |
for line in lines[func_def_index + 1:]:
|
75 |
-
if line.strip():
|
76 |
-
indented_lines.append(' ' + line)
|
77 |
else:
|
78 |
-
indented_lines.append(line)
|
79 |
|
80 |
formatted_code = '\n'.join(indented_lines)
|
81 |
|
@@ -84,34 +85,31 @@ def extract_and_format_code(text):
|
|
84 |
except:
|
85 |
return formatted_code
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
def generate_solution(problem, model_name):
|
92 |
-
model_path = gguf_models[model_name]
|
93 |
-
generated_output = run_llama_cpp(problem, model_path)
|
94 |
-
formatted_code = extract_and_format_code(generated_output)
|
95 |
-
return formatted_code
|
96 |
-
|
97 |
-
def gradio_interface(problem, model_name):
|
98 |
-
solution = generate_solution(problem, model_name)
|
99 |
-
return solution
|
100 |
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
problem_display = gr.Textbox(label="LeetCode Problem", lines=10)
|
107 |
-
select_problem_btn = gr.Button("Select Random Problem")
|
108 |
-
|
109 |
-
with gr.Column():
|
110 |
-
model_dropdown = gr.Dropdown(choices=list(gguf_models.keys()), label="Select GGUF Model", value="Exact Copy")
|
111 |
-
solution_display = gr.Code(label="Generated Solution", language="python")
|
112 |
-
generate_btn = gr.Button("Generate Solution")
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from huggingface_hub import hf_hub_download
|
3 |
from llama_cpp import Llama
|
4 |
import re
|
5 |
from datasets import load_dataset
|
|
|
|
|
6 |
import random
|
7 |
+
import autopep8
|
8 |
import textwrap
|
9 |
|
10 |
+
# Define the model options
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
gguf_models = {
|
12 |
+
"Exact Copy": "leetmonkey_peft_exact_copy.gguf",
|
13 |
+
"F16": "leetmonkey_peft_f16.gguf",
|
14 |
+
"Q8_0": "leetmonkey_peft__q8_0.gguf",
|
15 |
+
"Super Block Q6": "leetmonkey_peft_super_block_q6.gguf"
|
16 |
}
|
17 |
|
18 |
+
# Function to download and load the model
|
19 |
+
def load_model(model_name):
|
20 |
+
model_path = hf_hub_download(repo_id="sugiv/leetmonkey-peft-gguf", filename=model_name)
|
21 |
+
return Llama(model_path=model_path, n_ctx=2048, n_threads=4, n_gpu_layers=0, verbose=False)
|
22 |
+
|
23 |
+
# Generation parameters
|
24 |
generation_kwargs = {
|
25 |
"max_tokens": 2048,
|
26 |
+
"stop": ["<|end▁of▁sentence|>", "### Instruction:", "### Response:"],
|
27 |
"echo": False,
|
28 |
"temperature": 0.2,
|
29 |
"top_k": 50,
|
|
|
31 |
"repeat_penalty": 1.1
|
32 |
}
|
33 |
|
34 |
+
def generate_solution(instruction, model):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
system_prompt = "You are a Python coding assistant specialized in solving LeetCode problems. Provide only the complete implementation of the given function. Ensure proper indentation and formatting. Do not include any explanations or multiple solutions."
|
36 |
full_prompt = f"""<|begin▁of▁sentence|>
|
37 |
### Instruction:
|
|
|
47 |
```python
|
48 |
"""
|
49 |
|
50 |
+
response = model(full_prompt, **generation_kwargs)
|
51 |
+
return response["choices"][0]["text"]
|
52 |
|
53 |
def extract_and_format_code(text):
|
54 |
+
# Extract code between triple backticks
|
55 |
code_match = re.search(r'```python\s*(.*?)\s*```', text, re.DOTALL)
|
56 |
if code_match:
|
57 |
code = code_match.group(1)
|
58 |
else:
|
59 |
code = text
|
60 |
|
61 |
+
# Remove any text before the function definition
|
62 |
code = re.sub(r'^.*?(?=def\s+\w+\s*\()', '', code, flags=re.DOTALL)
|
63 |
+
|
64 |
+
# Dedent the code to remove any common leading whitespace
|
65 |
code = textwrap.dedent(code)
|
66 |
+
|
67 |
+
# Split the code into lines
|
68 |
lines = code.split('\n')
|
69 |
+
|
70 |
+
# Find the function definition line
|
71 |
func_def_index = next((i for i, line in enumerate(lines) if line.strip().startswith('def ')), 0)
|
72 |
+
|
73 |
+
# Ensure proper indentation
|
74 |
+
indented_lines = [lines[func_def_index]] # Keep the function definition as is
|
75 |
for line in lines[func_def_index + 1:]:
|
76 |
+
if line.strip(): # If the line is not empty
|
77 |
+
indented_lines.append(' ' + line) # Add 4 spaces of indentation
|
78 |
else:
|
79 |
+
indented_lines.append(line) # Keep empty lines as is
|
80 |
|
81 |
formatted_code = '\n'.join(indented_lines)
|
82 |
|
|
|
85 |
except:
|
86 |
return formatted_code
|
87 |
|
88 |
+
# Load the dataset
|
89 |
+
dataset = load_dataset("sugiv/leetmonkey_python_dataset")
|
90 |
+
val_dataset = dataset["train"].train_test_split(test_size=0.1)["test"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
+
def gradio_interface(model_name):
|
93 |
+
model = load_model(gguf_models[model_name])
|
94 |
+
sample = random.choice(val_dataset)
|
95 |
+
instruction = sample['instruction']
|
96 |
+
original_output = sample['output']
|
97 |
|
98 |
+
generated_output = generate_solution(instruction, model)
|
99 |
+
python_code = extract_and_format_code(generated_output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
return instruction, python_code, original_output
|
102 |
+
|
103 |
+
iface = gr.Interface(
|
104 |
+
fn=gradio_interface,
|
105 |
+
inputs=gr.Dropdown(choices=list(gguf_models.keys()), label="Select GGUF Model"),
|
106 |
+
outputs=[
|
107 |
+
gr.Textbox(label="LeetCode Problem", lines=10),
|
108 |
+
gr.Code(label="Generated Solution", language="python"),
|
109 |
+
gr.Code(label="Original Solution", language="python")
|
110 |
+
],
|
111 |
+
title="LeetCode Problem Solver",
|
112 |
+
description="Select a model to generate a solution for a random LeetCode problem."
|
113 |
+
)
|
114 |
+
|
115 |
+
iface.launch(share=True)
|
requirements.txt
CHANGED
@@ -2,4 +2,5 @@ gradio
|
|
2 |
llama-cpp-python
|
3 |
datasets
|
4 |
transformers
|
5 |
-
autopep8
|
|
|
|
2 |
llama-cpp-python
|
3 |
datasets
|
4 |
transformers
|
5 |
+
autopep8
|
6 |
+
huggingface_hub
|