Spaces:
Running
Running
import { pipeline, env } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected]'; | |
// Since we will download the model from the Hugging Face Hub, we can skip the local model check | |
env.allowLocalModels = false; | |
// Reference the elements that we will need | |
const status = document.getElementById('status'); | |
const fileUpload = document.getElementById('upload'); | |
const imageContainer = document.getElementById('container'); | |
const example = document.getElementById('example'); | |
const EXAMPLE_URL = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg'; | |
// Create a new object detection pipeline | |
status.textContent = 'Loading model...'; | |
// To-Do #1 pipeline API를 사용하여 detr-resnet-50 object detection 모델의 instance를 detector라는 이름을 붙여 생성하십시오. | |
// DETR 모델 참고 문서 https://huggingface.co/facebook/detr-resnet-50 | |
const detector = await pipeline('object-detection', 'facebook/detr-resnet-50'); | |
status.textContent = 'Ready'; | |
example.addEventListener('click', (e) => { | |
e.preventDefault(); | |
detect(EXAMPLE_URL); | |
}); | |
fileUpload.addEventListener('change', function (e) { | |
const file = e.target.files[0]; | |
if (!file) { | |
return; | |
} | |
const reader = new FileReader(); | |
// Set up a callback when the file is loaded | |
reader.onload = e2 => detect(e2.target.result); | |
reader.readAsDataURL(file); | |
}); | |
// Detect objects in the image | |
async function detect(img) { | |
imageContainer.innerHTML = ''; | |
imageContainer.style.backgroundImage = `url(${img})`; | |
status.textContent = 'Analysing...'; | |
// To-Do #2 객체 탐지를 위한 오브젝트에 threshold를 0.5, percentage를 true로 지정하고 그 결과를 output에 저장하십시오 | |
const output = await detector(img, { threshold: 0.5, percentage: true }); | |
// threshold 값을 지정하고 쉼표를 붙이시오 | |
// percentage 지정 | |
status.textContent = ''; | |
output.forEach(renderBox); | |
} | |
// Render a bounding box and label on the image | |
function renderBox({ box, label }) { | |
const { xmax, xmin, ymax, ymin } = box; | |
// Generate a random color for the box | |
const color = '#' + Math.floor(Math.random() * 0xFFFFFF).toString(16).padStart(6, 0); | |
// Draw the box | |
const boxElement = document.createElement('div'); | |
boxElement.className = 'bounding-box'; | |
Object.assign(boxElement.style, { | |
borderColor: color, | |
left: 100 * xmin + '%', | |
top: 100 * ymin + '%', | |
width: 100 * (xmax - xmin) + '%', | |
height: 100 * (ymax - ymin) + '%', | |
}) | |
// Draw label | |
const labelElement = document.createElement('span'); | |
labelElement.textContent = label; | |
labelElement.className = 'bounding-box-label'; | |
labelElement.style.backgroundColor = color; | |
boxElement.appendChild(labelElement); | |
imageContainer.appendChild(boxElement); | |
} | |