sujitb commited on
Commit
b403bb0
1 Parent(s): abae500

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -8
app.py CHANGED
@@ -1,6 +1,6 @@
1
  import streamlit as st
2
 
3
- from transformers import pipeline
4
  from pinecone import Pinecone, ServerlessSpec
5
  from sentence_transformers import SentenceTransformer, util
6
 
@@ -10,7 +10,7 @@ bi_encoder.max_seq_length = 256 # Truncate long documents to 256 tokens
10
 
11
  # Store the index as a variable
12
  INDEX_NAME = 'cl-search-idx'
13
- NAMESPACE = 'webpages'
14
  pc_api_key= '3f916d01-2a69-457d-85eb-966c5d1849a8' #AWS
15
  pc = Pinecone(api_key=pc_api_key)
16
  index = pc.Index(name=INDEX_NAME)
@@ -25,11 +25,18 @@ def query_from_pinecone(index,namespace, question_embedding, top_k=3):
25
  include_metadata=True # gets the metadata (dates, text, etc)
26
  ).get('matches')
27
 
28
-
29
  QUESTION=st.text_area('Ask a question -e.g How to prepare for Verbal section for CAT?') ##' How to prepare for Verbal section ?'
30
- question_embedding = bi_encoder.encode(QUESTION, convert_to_tensor=True)
31
- resp= query_from_pinecone(index,NAMESPACE, question_embedding.tolist(), 3)
32
- out= resp[0]['metadata']['text']
33
- #+ '\n*************\n'+ resp[1]['metadata']['text'] + '\n*************\n'+ resp[2]['metadata']['text']
34
 
35
- st.write(out)
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
 
3
+ #from transformers import pipeline
4
  from pinecone import Pinecone, ServerlessSpec
5
  from sentence_transformers import SentenceTransformer, util
6
 
 
10
 
11
  # Store the index as a variable
12
  INDEX_NAME = 'cl-search-idx'
13
+
14
  pc_api_key= '3f916d01-2a69-457d-85eb-966c5d1849a8' #AWS
15
  pc = Pinecone(api_key=pc_api_key)
16
  index = pc.Index(name=INDEX_NAME)
 
25
  include_metadata=True # gets the metadata (dates, text, etc)
26
  ).get('matches')
27
 
 
28
  QUESTION=st.text_area('Ask a question -e.g How to prepare for Verbal section for CAT?') ##' How to prepare for Verbal section ?'
 
 
 
 
29
 
30
+ if QUESTION:
31
+ question_embedding = bi_encoder.encode(QUESTION, convert_to_tensor=True)
32
+
33
+ ns='full'
34
+ resp= query_from_pinecone(index,ns, question_embedding.tolist(), 3)
35
+ if len(resp)>0:
36
+ out= resp[0]['metadata']['data']
37
+ url= "Matching url "+resp[0]['id']
38
+ #+ '\n*************\n'+ resp[1]['metadata']['text'] + '\n*************\n'+ resp[2]['metadata']['text']
39
+ st.write(url)
40
+ st.write(out)
41
+ else:
42
+ st.write("No matches for query")