Added pc
Browse files
app.py
CHANGED
@@ -11,23 +11,24 @@ bi_encoder.max_seq_length = 256 # Truncate long documents to 256 tokens
|
|
11 |
# Store the index as a variable
|
12 |
INDEX_NAME = 'cl-search-idx'
|
13 |
NAMESPACE = 'webpages'
|
14 |
-
|
|
|
15 |
index = pc.Index(name=INDEX_NAME)
|
16 |
|
17 |
-
def query_from_pinecone(index, question_embedding, top_k=3):
|
18 |
# get embedding from THE SAME embedder as the documents
|
19 |
|
20 |
return index.query(
|
21 |
vector=question_embedding,
|
22 |
top_k=top_k,
|
23 |
-
namespace=
|
24 |
include_metadata=True # gets the metadata (dates, text, etc)
|
25 |
).get('matches')
|
26 |
|
27 |
|
28 |
QUESTION=st.text_area('Ask a question -e.g How to prepare for Verbal section for CAT?') ##' How to prepare for Verbal section ?'
|
29 |
question_embedding = bi_encoder.encode(QUESTION, convert_to_tensor=True)
|
30 |
-
resp= query_from_pinecone(question_embedding.tolist(), 3)
|
31 |
docresult= resp[0]['metadata']['text']
|
32 |
#+ '\n*************\n'+ resp[1]['metadata']['text'] + '\n*************\n'+ resp[2]['metadata']['text']
|
33 |
|
|
|
11 |
# Store the index as a variable
|
12 |
INDEX_NAME = 'cl-search-idx'
|
13 |
NAMESPACE = 'webpages'
|
14 |
+
pc_api_key= '3f916d01-2a69-457d-85eb-966c5d1849a8' #AWS
|
15 |
+
pc = Pinecone(api_key=pc_api_key)
|
16 |
index = pc.Index(name=INDEX_NAME)
|
17 |
|
18 |
+
def query_from_pinecone(index,namespace, question_embedding, top_k=3):
|
19 |
# get embedding from THE SAME embedder as the documents
|
20 |
|
21 |
return index.query(
|
22 |
vector=question_embedding,
|
23 |
top_k=top_k,
|
24 |
+
namespace=namespace,
|
25 |
include_metadata=True # gets the metadata (dates, text, etc)
|
26 |
).get('matches')
|
27 |
|
28 |
|
29 |
QUESTION=st.text_area('Ask a question -e.g How to prepare for Verbal section for CAT?') ##' How to prepare for Verbal section ?'
|
30 |
question_embedding = bi_encoder.encode(QUESTION, convert_to_tensor=True)
|
31 |
+
resp= query_from_pinecone(index,NAMESPACE, question_embedding.tolist(), 3)
|
32 |
docresult= resp[0]['metadata']['text']
|
33 |
#+ '\n*************\n'+ resp[1]['metadata']['text'] + '\n*************\n'+ resp[2]['metadata']['text']
|
34 |
|