Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import matplotlib.pyplot as plt
|
@@ -5,37 +16,30 @@ from sklearn import datasets
|
|
5 |
from sklearn.linear_model import SGDClassifier
|
6 |
from sklearn.inspection import DecisionBoundaryDisplay
|
7 |
|
8 |
-
def predict_class(x, y):
|
9 |
-
iris = datasets.load_iris()
|
10 |
-
X = iris.data[:, :2]
|
11 |
-
y = iris.target
|
12 |
-
colors = "bry"
|
13 |
-
idx = np.arange(X.shape[0])
|
14 |
-
np.random.seed(13)
|
15 |
-
np.random.shuffle(idx)
|
16 |
-
X = X[idx]
|
17 |
-
y = y[idx]
|
18 |
-
mean = X.mean(axis=0)
|
19 |
-
std = X.std(axis=0)
|
20 |
-
X = (X - mean) / std
|
21 |
-
clf = SGDClassifier(alpha=0.001, max_iter=100).fit(X, y)
|
22 |
-
predicted_class = clf.predict(np.array([[x, y]]))[0]
|
23 |
-
return iris.target_names[predicted_class]
|
24 |
|
25 |
-
def
|
|
|
26 |
iris = datasets.load_iris()
|
|
|
|
|
|
|
27 |
X = iris.data[:, :2]
|
28 |
y = iris.target
|
29 |
colors = "bry"
|
|
|
|
|
30 |
idx = np.arange(X.shape[0])
|
31 |
np.random.seed(13)
|
32 |
np.random.shuffle(idx)
|
33 |
X = X[idx]
|
34 |
y = y[idx]
|
|
|
|
|
35 |
mean = X.mean(axis=0)
|
36 |
std = X.std(axis=0)
|
37 |
X = (X - mean) / std
|
38 |
-
|
|
|
39 |
ax = plt.gca()
|
40 |
DecisionBoundaryDisplay.from_estimator(
|
41 |
clf,
|
@@ -46,54 +50,49 @@ def decision_boundary(x_min, x_max, y_min, y_max):
|
|
46 |
xlabel=iris.feature_names[0],
|
47 |
ylabel=iris.feature_names[1],
|
48 |
)
|
49 |
-
plt.axis(
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
layout="vertical",
|
96 |
-
allow_flagging=False,
|
97 |
-
live=True,
|
98 |
-
outputs=[None, decision_boundary],
|
99 |
-
).launch()
|
|
|
1 |
+
|
2 |
+
"""
|
3 |
+
========================================
|
4 |
+
Plot multi-class SGD on the iris dataset
|
5 |
+
========================================
|
6 |
+
|
7 |
+
Plot decision surface of multi-class SGD on iris dataset.
|
8 |
+
The hyperplanes corresponding to the three one-versus-all (OVA) classifiers
|
9 |
+
are represented by the dashed lines.
|
10 |
+
|
11 |
+
"""
|
12 |
import gradio as gr
|
13 |
import numpy as np
|
14 |
import matplotlib.pyplot as plt
|
|
|
16 |
from sklearn.linear_model import SGDClassifier
|
17 |
from sklearn.inspection import DecisionBoundaryDisplay
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
def plot(alpha):
|
21 |
+
# import some data to play with
|
22 |
iris = datasets.load_iris()
|
23 |
+
|
24 |
+
# we only take the first two features. We could
|
25 |
+
# avoid this ugly slicing by using a two-dim dataset
|
26 |
X = iris.data[:, :2]
|
27 |
y = iris.target
|
28 |
colors = "bry"
|
29 |
+
|
30 |
+
# shuffle
|
31 |
idx = np.arange(X.shape[0])
|
32 |
np.random.seed(13)
|
33 |
np.random.shuffle(idx)
|
34 |
X = X[idx]
|
35 |
y = y[idx]
|
36 |
+
|
37 |
+
# standardize
|
38 |
mean = X.mean(axis=0)
|
39 |
std = X.std(axis=0)
|
40 |
X = (X - mean) / std
|
41 |
+
|
42 |
+
clf = SGDClassifier(alpha=alpha, max_iter=100).fit(X, y)
|
43 |
ax = plt.gca()
|
44 |
DecisionBoundaryDisplay.from_estimator(
|
45 |
clf,
|
|
|
50 |
xlabel=iris.feature_names[0],
|
51 |
ylabel=iris.feature_names[1],
|
52 |
)
|
53 |
+
plt.axis("tight")
|
54 |
+
|
55 |
+
# Plot also the training points
|
56 |
+
for i, color in zip(clf.classes_, colors):
|
57 |
+
idx = np.where(y == i)
|
58 |
+
plt.scatter(
|
59 |
+
X[idx, 0],
|
60 |
+
X[idx, 1],
|
61 |
+
c=color,
|
62 |
+
label=iris.target_names[i],
|
63 |
+
cmap=plt.cm.Paired,
|
64 |
+
edgecolor="black",
|
65 |
+
s=20,
|
66 |
+
)
|
67 |
+
plt.title("Decision surface of multi-class SGD")
|
68 |
+
plt.axis("tight")
|
69 |
+
|
70 |
+
# Plot the three one-against-all classifiers
|
71 |
+
xmin, xmax = plt.xlim()
|
72 |
+
ymin, ymax = plt.ylim()
|
73 |
+
coef = clf.coef_
|
74 |
+
intercept = clf.intercept_
|
75 |
+
|
76 |
+
|
77 |
+
def plot_hyperplane(c, color):
|
78 |
+
def line(x0):
|
79 |
+
return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1]
|
80 |
+
|
81 |
+
plt.plot([xmin, xmax], [line(xmin), line(xmax)], ls="--", color=color)
|
82 |
+
|
83 |
+
for i, color in zip(clf.classes_, colors):
|
84 |
+
plot_hyperplane(i, color)
|
85 |
+
plt.legend()
|
86 |
+
#plt.show()
|
87 |
+
return plt
|
88 |
+
|
89 |
+
#pl = plot(0)
|
90 |
+
#pl.show()
|
91 |
+
with gr.Blocks() as demo:
|
92 |
+
alpha = gr.Slider(minimum=0.0001, maximum=10, step=0.01, value=0.0001, label="Alpha Value")
|
93 |
+
with gr.Row():
|
94 |
+
plt = gr.Plot()
|
95 |
+
|
96 |
+
alpha.change(fn=plot, inputs=[alpha],outputs=[plt])
|
97 |
+
|
98 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|