Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,6 @@ import faiss
|
|
5 |
import numpy as np
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
import PyPDF2
|
8 |
-
import os
|
9 |
|
10 |
# Model Setup
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -22,6 +21,8 @@ embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
|
22 |
dimension = 384 # Embedding size for MiniLM
|
23 |
index = faiss.IndexFlatL2(dimension)
|
24 |
docs = [] # Store document texts
|
|
|
|
|
25 |
|
26 |
# Function to extract text from PDF
|
27 |
def extract_text_from_pdf(uploaded_file):
|
@@ -29,9 +30,10 @@ def extract_text_from_pdf(uploaded_file):
|
|
29 |
text = "\n".join([page.extract_text() for page in reader.pages if page.extract_text()])
|
30 |
return text
|
31 |
|
32 |
-
|
|
|
33 |
def process_documents(files):
|
34 |
-
global docs, index
|
35 |
docs = []
|
36 |
|
37 |
for file in files:
|
@@ -44,15 +46,38 @@ def process_documents(files):
|
|
44 |
|
45 |
embeddings = embedding_model.encode(docs)
|
46 |
index.add(np.array(embeddings))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
# Function to retrieve relevant context
|
49 |
def retrieve_context(query):
|
|
|
|
|
|
|
50 |
query_embedding = embedding_model.encode([query])
|
51 |
distances, indices = index.search(np.array(query_embedding), k=1)
|
52 |
|
53 |
-
if len(indices)
|
54 |
-
return
|
55 |
-
|
|
|
|
|
56 |
|
57 |
# Function to generate response using IBM Granite
|
58 |
def generate_response(query, context):
|
@@ -64,27 +89,32 @@ def generate_response(query, context):
|
|
64 |
|
65 |
input_tokens = tokenizer(chat, return_tensors="pt").to(device)
|
66 |
output = model.generate(**input_tokens, max_new_tokens=200)
|
|
|
67 |
return tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|
68 |
|
|
|
69 |
# Streamlit UI
|
70 |
-
st.set_page_config(page_title="π
|
71 |
-
st.title("π
|
72 |
-
st.subheader("Upload
|
73 |
|
74 |
-
uploaded_files = st.file_uploader("Upload
|
75 |
|
76 |
if uploaded_files:
|
77 |
-
with st.spinner("Processing
|
78 |
-
process_documents(uploaded_files)
|
79 |
-
st.success("
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
84 |
else:
|
85 |
with st.spinner("Retrieving and generating response..."):
|
86 |
context = retrieve_context(query)
|
87 |
response = generate_response(query, context)
|
88 |
st.markdown("### π€ Answer:")
|
89 |
st.write(response)
|
90 |
-
|
|
|
5 |
import numpy as np
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
import PyPDF2
|
|
|
8 |
|
9 |
# Model Setup
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
21 |
dimension = 384 # Embedding size for MiniLM
|
22 |
index = faiss.IndexFlatL2(dimension)
|
23 |
docs = [] # Store document texts
|
24 |
+
summary = "" # Store book summary
|
25 |
+
|
26 |
|
27 |
# Function to extract text from PDF
|
28 |
def extract_text_from_pdf(uploaded_file):
|
|
|
30 |
text = "\n".join([page.extract_text() for page in reader.pages if page.extract_text()])
|
31 |
return text
|
32 |
|
33 |
+
|
34 |
+
# Function to process uploaded documents and generate summary
|
35 |
def process_documents(files):
|
36 |
+
global docs, index, summary
|
37 |
docs = []
|
38 |
|
39 |
for file in files:
|
|
|
46 |
|
47 |
embeddings = embedding_model.encode(docs)
|
48 |
index.add(np.array(embeddings))
|
49 |
+
|
50 |
+
# Generate summary after processing documents
|
51 |
+
summary = generate_summary("\n".join(docs))
|
52 |
+
|
53 |
+
|
54 |
+
# Function to generate a book summary
|
55 |
+
def generate_summary(text):
|
56 |
+
chat = [
|
57 |
+
{"role": "system", "content": "You are a helpful AI that summarizes books."},
|
58 |
+
{"role": "user", "content": f"Summarize this book in a short paragraph:\n{text[:4000]}"} # Limiting input size
|
59 |
+
]
|
60 |
+
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
61 |
+
|
62 |
+
input_tokens = tokenizer(chat, return_tensors="pt").to(device)
|
63 |
+
output = model.generate(**input_tokens, max_new_tokens=300)
|
64 |
+
|
65 |
+
return tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|
66 |
+
|
67 |
|
68 |
# Function to retrieve relevant context
|
69 |
def retrieve_context(query):
|
70 |
+
if index.ntotal == 0:
|
71 |
+
return "No documents available. Please upload files first."
|
72 |
+
|
73 |
query_embedding = embedding_model.encode([query])
|
74 |
distances, indices = index.search(np.array(query_embedding), k=1)
|
75 |
|
76 |
+
if len(indices) == 0 or indices[0][0] >= len(docs):
|
77 |
+
return "No relevant context found."
|
78 |
+
|
79 |
+
return docs[indices[0][0]]
|
80 |
+
|
81 |
|
82 |
# Function to generate response using IBM Granite
|
83 |
def generate_response(query, context):
|
|
|
89 |
|
90 |
input_tokens = tokenizer(chat, return_tensors="pt").to(device)
|
91 |
output = model.generate(**input_tokens, max_new_tokens=200)
|
92 |
+
|
93 |
return tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|
94 |
|
95 |
+
|
96 |
# Streamlit UI
|
97 |
+
st.set_page_config(page_title="π AI Book Assistant", page_icon="π")
|
98 |
+
st.title("π AI-Powered Book Assistant")
|
99 |
+
st.subheader("Upload a book and get its summary or ask questions!")
|
100 |
|
101 |
+
uploaded_files = st.file_uploader("Upload a book (PDF or TXT)", accept_multiple_files=False)
|
102 |
|
103 |
if uploaded_files:
|
104 |
+
with st.spinner("Processing book and generating summary..."):
|
105 |
+
process_documents([uploaded_files])
|
106 |
+
st.success("Book uploaded and processed!")
|
107 |
|
108 |
+
st.markdown("### π Book Summary:")
|
109 |
+
st.write(summary)
|
110 |
+
|
111 |
+
query = st.text_input("Ask a question about the book:")
|
112 |
+
if st.button("Get Answer"):
|
113 |
+
if index.ntotal == 0:
|
114 |
+
st.warning("Please upload a book first!")
|
115 |
else:
|
116 |
with st.spinner("Retrieving and generating response..."):
|
117 |
context = retrieve_context(query)
|
118 |
response = generate_response(query, context)
|
119 |
st.markdown("### π€ Answer:")
|
120 |
st.write(response)
|
|