Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,21 +7,37 @@ from sentence_transformers import SentenceTransformer
|
|
7 |
import fitz # PyMuPDF for better PDF extraction
|
8 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
9 |
|
|
|
10 |
# Configuration
|
11 |
MODEL_NAME = "ibm-granite/granite-3.1-1b-a400m-instruct"
|
12 |
-
EMBED_MODEL = "sentence-transformers/all-mpnet-base-v2"
|
13 |
-
CHUNK_SIZE = 512
|
14 |
-
CHUNK_OVERLAP = 64
|
15 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
|
17 |
-
# Initialize session state
|
18 |
-
if "docs" not in st.session_state:
|
19 |
-
st.session_state.docs = []
|
20 |
-
if "index" not in st.session_state:
|
21 |
-
st.session_state.index = None
|
22 |
-
|
23 |
-
# Model loading with better error handling
|
24 |
@st.cache_resource
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def load_models():
|
26 |
try:
|
27 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
|
|
7 |
import fitz # PyMuPDF for better PDF extraction
|
8 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
9 |
|
10 |
+
|
11 |
# Configuration
|
12 |
MODEL_NAME = "ibm-granite/granite-3.1-1b-a400m-instruct"
|
|
|
|
|
|
|
13 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
@st.cache_resource
|
16 |
+
def load_model():
|
17 |
+
try:
|
18 |
+
# Load with explicit configuration
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
20 |
+
MODEL_NAME,
|
21 |
+
trust_remote_code=True,
|
22 |
+
revision="main"
|
23 |
+
)
|
24 |
+
|
25 |
+
model = AutoModelForCausalLM.from_pretrained(
|
26 |
+
MODEL_NAME,
|
27 |
+
device_map="auto" if DEVICE == "cuda" else None,
|
28 |
+
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
|
29 |
+
trust_remote_code=True,
|
30 |
+
revision="main",
|
31 |
+
low_cpu_mem_usage=True
|
32 |
+
)
|
33 |
+
return model, tokenizer
|
34 |
+
except Exception as e:
|
35 |
+
st.error(f"Model loading failed: {str(e)}")
|
36 |
+
st.stop()
|
37 |
+
|
38 |
+
model, tokenizer = load_model()
|
39 |
+
|
40 |
+
|
41 |
def load_models():
|
42 |
try:
|
43 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|