import streamlit as st import torch import numpy as np import faiss from transformers import AutoModelForCausalLM, AutoTokenizer from sentence_transformers import SentenceTransformer import fitz # PyMuPDF for PDF extraction from langchain_text_splitters import RecursiveCharacterTextSplitter # Configuration MODEL_NAME = "ibm-granite/granite-3.1-1b-a400m-instruct" EMBED_MODEL = "sentence-transformers/all-mpnet-base-v2" CHUNK_SIZE = 512 CHUNK_OVERLAP = 64 DEVICE = "cuda" if torch.cuda.is_available() else "cpu" @st.cache_resource def load_models(): try: # Load tokenizer and generative model with trust_remote_code enabled tokenizer = AutoTokenizer.from_pretrained( MODEL_NAME, trust_remote_code=True, revision="main" ) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, device_map="auto" if DEVICE == "cuda" else None, torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32, trust_remote_code=True, revision="main", low_cpu_mem_usage=True ).eval() # Load embedding model for FAISS embedder = SentenceTransformer(EMBED_MODEL, device=DEVICE) return tokenizer, model, embedder except Exception as e: st.error(f"Model loading failed: {str(e)}") st.stop() tokenizer, model, embedder = load_models() # Improved text processing: splits text into chunks def process_text(text): splitter = RecursiveCharacterTextSplitter( chunk_size=CHUNK_SIZE, chunk_overlap=CHUNK_OVERLAP, length_function=len ) return splitter.split_text(text) # Enhanced PDF extraction using PyMuPDF def extract_pdf_text(uploaded_file): try: doc = fitz.open(stream=uploaded_file.read(), filetype="pdf") return "\n".join([page.get_text() for page in doc]) except Exception as e: st.error(f"PDF extraction error: {str(e)}") return "" # Multi-step summarization def generate_summary(text): chunks = process_text(text)[:10] # Use first 10 chunks for summary summaries = [] for chunk in chunks: prompt = f"""<|user|> Summarize this text section focusing on key themes, characters, and plot points: {chunk[:2000]} <|assistant|> """ inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE) outputs = model.generate(**inputs, max_new_tokens=300, temperature=0.3) summary_text = tokenizer.decode(outputs[0], skip_special_tokens=True) summaries.append(summary_text) # Combine individual summaries into one comprehensive summary combined = "\n".join(summaries) final_prompt = f"""<|user|> Combine these section summaries into a coherent book summary: {combined} <|assistant|> The comprehensive summary is:""" inputs = tokenizer(final_prompt, return_tensors="pt").to(DEVICE) outputs = model.generate(**inputs, max_new_tokens=500, temperature=0.5) full_summary = tokenizer.decode(outputs[0], skip_special_tokens=True) return full_summary.split(":")[-1].strip() # Enhanced retrieval system using FAISS def build_faiss_index(texts): embeddings = embedder.encode(texts, show_progress_bar=True) dimension = embeddings.shape[1] index = faiss.IndexFlatIP(dimension) faiss.normalize_L2(embeddings) index.add(embeddings) return index # Context-aware answer generation def generate_answer(query, context): prompt = f"""<|user|> Using this context: {context} Answer the question precisely and truthfully. If unsure, say "I don't know". Question: {query} <|assistant|> """ inputs = tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True).to(DEVICE) outputs = model.generate( **inputs, max_new_tokens=300, temperature=0.4, top_p=0.9, repetition_penalty=1.2, do_sample=True ) answer_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return answer_text.split("<|assistant|>")[-1].strip() # Streamlit UI setup st.set_page_config(page_title="📚 Smart Book Analyst", layout="wide") st.title("📚 AI-Powered Book Analysis System") # File upload uploaded_file = st.file_uploader("Upload book (PDF or TXT)", type=["pdf", "txt"]) if uploaded_file: with st.spinner("📖 Analyzing book content..."): try: if uploaded_file.type == "application/pdf": text = extract_pdf_text(uploaded_file) else: text = uploaded_file.read().decode() chunks = process_text(text) st.session_state.docs = chunks st.session_state.index = build_faiss_index(chunks) with st.expander("📝 Book Summary", expanded=True): summary = generate_summary(text) st.write(summary) except Exception as e: st.error(f"Processing failed: {str(e)}") # Query interface if "index" in st.session_state and st.session_state.index is not None: query = st.text_input("Ask about the book:") if query: with st.spinner("🔍 Searching for answers..."): try: # Retrieve top 3 relevant chunks query_embed = embedder.encode([query]) faiss.normalize_L2(query_embed) distances, indices = st.session_state.index.search(query_embed, k=3) context = "\n".join([st.session_state.docs[i] for i in indices[0]]) answer = generate_answer(query, context) st.subheader("Answer") st.markdown(f"```\n{answer}\n```") st.caption("Retrieved context confidence: {:.2f}".format(distances[0][0])) except Exception as e: st.error(f"Query failed: {str(e)}")