Spaces:
Running
Running
# app.py | |
import os | |
import streamlit as st | |
import arxiv | |
import networkx as nx | |
import matplotlib.pyplot as plt | |
import datetime | |
# ------------------------------- | |
# Groq API Client | |
# ------------------------------- | |
from groq import Groq | |
client = Groq( | |
api_key=os.environ.get("GROQ_API_KEY"), | |
) | |
# ------------------------------- | |
# Helper Functions (Groq-based) | |
# ------------------------------- | |
def groq_summarize(text: str) -> str: | |
""" | |
Summarize the given text using Groq's chat completion API. | |
Adjust the prompt or model as needed. | |
""" | |
response = client.chat.completions.create( | |
messages=[ | |
{ | |
"role": "user", | |
"content": f"Summarize the following text in detail:\n\n{text}" | |
} | |
], | |
model="llama-3.3-70b-versatile", | |
) | |
return response.choices[0].message.content.strip() | |
def groq_generate(text: str) -> str: | |
""" | |
Generate text (e.g., research proposals) using Groq's chat completion API. | |
Adjust the prompt or model as needed. | |
""" | |
response = client.chat.completions.create( | |
messages=[ | |
{ | |
"role": "user", | |
"content": text | |
} | |
], | |
model="llama-3.3-70b-versatile", | |
) | |
return response.choices[0].message.content.strip() | |
# ------------------------------- | |
# Existing Helper Functions | |
# ------------------------------- | |
def retrieve_papers(query, max_results=5): | |
"""Retrieve academic papers from arXiv.""" | |
search = arxiv.Search(query=query, max_results=max_results) | |
papers = [] | |
for result in search.results(): | |
paper = { | |
"title": result.title, | |
"summary": result.summary, | |
"url": result.pdf_url, | |
"authors": [author.name for author in result.authors], | |
"published": result.published | |
} | |
papers.append(paper) | |
return papers | |
def summarize_text(text): | |
""" | |
Wrap the groq_summarize function so it's easy to switch | |
implementations if needed. | |
""" | |
return groq_summarize(text) | |
def generate_concept_map(papers): | |
"""Create a concept map (graph) based on author connections.""" | |
G = nx.Graph() | |
for paper in papers: | |
G.add_node(paper['title']) | |
for i in range(len(papers)): | |
for j in range(i + 1, len(papers)): | |
if set(papers[i]['authors']) & set(papers[j]['authors']): | |
G.add_edge(papers[i]['title'], papers[j]['title']) | |
return G | |
def generate_citation(paper): | |
"""Generate APA-style citation for a paper.""" | |
authors = ", ".join(paper['authors']) | |
if isinstance(paper['published'], datetime.datetime): | |
year = paper['published'].year | |
else: | |
year = "n.d." | |
return f"{authors} ({year}). {paper['title']}. Retrieved from {paper['url']}" | |
def generate_proposal_suggestions(text): | |
""" | |
Generate novel research proposal suggestions based on text, | |
wrapping the groq_generate function. | |
""" | |
prompt = ( | |
f"Based on this research summary:\n\n{text}\n\n" | |
"Propose novel research directions:" | |
) | |
return groq_generate(prompt) | |
def get_cached_summary(paper_id, text): | |
""" | |
Retrieve or create a cached summary for a given paper. | |
This ensures each paper's summary is generated only once. | |
""" | |
if 'summaries' not in st.session_state: | |
st.session_state.summaries = {} | |
if paper_id not in st.session_state.summaries: | |
st.session_state.summaries[paper_id] = summarize_text(text) | |
return st.session_state.summaries[paper_id] | |
# ------------------------------- | |
# Streamlit Interface | |
# ------------------------------- | |
st.title("π PaperPilot β Intelligent Academic Navigator") | |
# Add the Overview subheading | |
st.write(""" | |
PaperPilot is an intelligent academic navigator designed to simplify your research workflow. | |
With a single query, it fetches relevant academic papers and provides you with a | |
comprehensive toolkit to explore them in depth. You can read a quick summary of each article, | |
view a visual concept map to see how different papers are interlinked, generate properly | |
formatted citations, and even receive suggestions for novel research proposals. By integrating | |
state-of-the-art AI models, PaperPilot streamlines the entire literature review processβmaking | |
it easier to stay organized, discover new insights, and advance your academic endeavors. | |
""") | |
# --------------------------------- | |
# Sidebar: Search & Navigation | |
# --------------------------------- | |
with st.sidebar: | |
st.header("π Search Parameters") | |
query = st.text_input("Research topic or question:") | |
if st.button("π Find Articles"): | |
if query.strip(): | |
with st.spinner("Searching arXiv..."): | |
papers = retrieve_papers(query) | |
if papers: | |
st.session_state.papers = papers | |
st.success(f"Found {len(papers)} papers!") | |
# Default to showing articles after retrieval | |
st.session_state.active_section = "articles" | |
else: | |
st.error("No papers found. Try different keywords.") | |
else: | |
st.warning("Please enter a search query") | |
# Navigation buttons (only relevant if we have papers in session) | |
if 'papers' in st.session_state and st.session_state.papers: | |
st.header("π Navigation") | |
if st.button("π Show Articles"): | |
st.session_state.active_section = "articles" | |
if st.button("π Literature Review & Summary"): | |
st.session_state.active_section = "review" | |
if st.button("π Concept & Visual Graph"): | |
st.session_state.active_section = "graph" | |
if st.button("π Formatted Citations"): | |
st.session_state.active_section = "citations" | |
if st.button("π‘ Research Proposal"): | |
st.session_state.active_section = "proposal" | |
# --------------------------------- | |
# Main Content Area | |
# --------------------------------- | |
if 'active_section' not in st.session_state: | |
st.session_state.active_section = "none" | |
if 'papers' in st.session_state and st.session_state.papers: | |
papers = st.session_state.papers | |
# --------------------------------- | |
# 1) Show Articles | |
# --------------------------------- | |
if st.session_state.active_section == "articles": | |
st.header("π Retrieved Papers") | |
for idx, paper in enumerate(papers, 1): | |
with st.expander(f"{idx}. {paper['title']}"): | |
st.markdown(f"**Authors:** {', '.join(paper['authors'])}") | |
if isinstance(paper['published'], datetime.datetime): | |
pub_date = paper['published'].strftime('%Y-%m-%d') | |
else: | |
pub_date = "n.d." | |
st.markdown(f"**Published:** {pub_date}") | |
st.markdown(f"**Link:** [PDF Link]({paper['url']})") | |
st.markdown("**Abstract:**") | |
st.write(paper['summary']) | |
# --------------------------------- | |
# 2) Literature Review & Summary | |
# --------------------------------- | |
elif st.session_state.active_section == "review": | |
st.header("π Literature Review & Summary") | |
combined_summary = "" | |
for idx, paper in enumerate(papers, 1): | |
with st.expander(f"Summary: {paper['title']}", expanded=False): | |
with st.spinner(f"Analyzing {paper['title']}..."): | |
paper_id = f"paper_{idx}" | |
summary = get_cached_summary(paper_id, paper['summary']) | |
st.write(summary) | |
combined_summary += summary + "\n\n" | |
st.session_state.combined_summary = combined_summary | |
# --------------------------------- | |
# 3) Concept & Visual Graph | |
# --------------------------------- | |
elif st.session_state.active_section == "graph": | |
st.header("π Concept & Visual Graph") | |
st.write( | |
"Below is a concept map that visualizes how the authors are " | |
"connected across the retrieved articles. Each node represents a paper, " | |
"and edges indicate shared authors." | |
) | |
with st.spinner("Generating concept map..."): | |
G = generate_concept_map(papers) | |
if G.nodes(): | |
fig, ax = plt.subplots(figsize=(10, 8)) | |
pos = nx.spring_layout(G, k=0.5, seed=42) | |
nx.draw_networkx_nodes(G, pos, node_color='skyblue', node_size=2000, ax=ax) | |
nx.draw_networkx_edges(G, pos, edge_color='#666666', ax=ax) | |
nx.draw_networkx_labels(G, pos, font_size=10, ax=ax) | |
ax.axis('off') | |
st.pyplot(fig) | |
else: | |
st.info("No significant connections found between papers.") | |
# --------------------------------- | |
# 4) Formatted Citations | |
# --------------------------------- | |
elif st.session_state.active_section == "citations": | |
st.header("π Formatted Citations (APA Style)") | |
for paper in papers: | |
st.markdown(f"- {generate_citation(paper)}") | |
# --------------------------------- | |
# 5) Research Proposal | |
# --------------------------------- | |
elif st.session_state.active_section == "proposal": | |
st.header("π‘ Research Proposal Suggestions") | |
# Make sure we have a combined summary for the proposals | |
if 'combined_summary' not in st.session_state: | |
with st.spinner("Synthesizing research overview..."): | |
full_text = "\n".join([p['summary'] for p in papers]) | |
st.session_state.combined_summary = summarize_text(full_text) | |
with st.spinner("Generating innovative ideas..."): | |
proposal = generate_proposal_suggestions(st.session_state.combined_summary[:2000]) | |
st.write(proposal) | |
else: | |
st.info("Please select an option from the sidebar to begin.") | |
else: | |
st.info("Enter a query in the sidebar and click 'Find Articles' to get started.") | |
st.caption("Built with β€οΈ using AI") | |