File size: 8,380 Bytes
1999a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license

import argparse
from typing import Tuple, Union

import cv2
import numpy as np
import tensorflow as tf
import yaml

from ultralytics.utils import ASSETS

try:
    from tflite_runtime.interpreter import Interpreter
except ImportError:
    import tensorflow as tf

    Interpreter = tf.lite.Interpreter


class YOLOv8TFLite:
    """
    YOLOv8TFLite.

    A class for performing object detection using the YOLOv8 model with TensorFlow Lite.

    Attributes:
        model (str): Path to the TensorFlow Lite model file.
        conf (float): Confidence threshold for filtering detections.
        iou (float): Intersection over Union threshold for non-maximum suppression.
        metadata (Optional[str]): Path to the metadata file, if any.

    Methods:
        detect(img_path: str) -> np.ndarray:
            Performs inference and returns the output image with drawn detections.
    """

    def __init__(self, model: str, conf: float = 0.25, iou: float = 0.45, metadata: Union[str, None] = None):
        """
        Initializes an instance of the YOLOv8TFLite class.

        Args:
            model (str): Path to the TFLite model.
            conf (float, optional): Confidence threshold for filtering detections. Defaults to 0.25.
            iou (float, optional): IoU (Intersection over Union) threshold for non-maximum suppression. Defaults to 0.45.
            metadata (Union[str, None], optional): Path to the metadata file or None if not used. Defaults to None.
        """
        self.conf = conf
        self.iou = iou
        if metadata is None:
            self.classes = {i: i for i in range(1000)}
        else:
            with open(metadata) as f:
                self.classes = yaml.safe_load(f)["names"]
        np.random.seed(42)
        self.color_palette = np.random.uniform(128, 255, size=(len(self.classes), 3))

        self.model = Interpreter(model_path=model)
        self.model.allocate_tensors()

        input_details = self.model.get_input_details()[0]

        self.in_width, self.in_height = input_details["shape"][1:3]
        self.in_index = input_details["index"]
        self.in_scale, self.in_zero_point = input_details["quantization"]
        self.int8 = input_details["dtype"] == np.int8

        output_details = self.model.get_output_details()[0]
        self.out_index = output_details["index"]
        self.out_scale, self.out_zero_point = output_details["quantization"]

    def letterbox(self, img: np.ndarray, new_shape: Tuple = (640, 640)) -> Tuple[np.ndarray, Tuple[float, float]]:
        """Resizes and reshapes images while maintaining aspect ratio by adding padding, suitable for YOLO models."""
        shape = img.shape[:2]  # current shape [height, width]

        # Scale ratio (new / old)
        r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])

        # Compute padding
        new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
        dw, dh = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2  # wh padding

        if shape[::-1] != new_unpad:  # resize
            img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
        top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
        left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
        img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))

        return img, (top / img.shape[0], left / img.shape[1])

    def draw_detections(self, img: np.ndarray, box: np.ndarray, score: np.float32, class_id: int) -> None:
        """
        Draws bounding boxes and labels on the input image based on the detected objects.

        Args:
            img (np.ndarray): The input image to draw detections on.
            box (np.ndarray): Detected bounding box in the format [x1, y1, width, height].
            score (np.float32): Corresponding detection score.
            class_id (int): Class ID for the detected object.

        Returns:
            None
        """
        x1, y1, w, h = box
        color = self.color_palette[class_id]

        cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2)

        label = f"{self.classes[class_id]}: {score:.2f}"

        (label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)

        label_x = x1
        label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10

        cv2.rectangle(
            img,
            (int(label_x), int(label_y - label_height)),
            (int(label_x + label_width), int(label_y + label_height)),
            color,
            cv2.FILLED,
        )

        cv2.putText(img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)

    def preprocess(self, img: np.ndarray) -> Tuple[np.ndarray, Tuple[float, float]]:
        """
        Preprocesses the input image before performing inference.

        Args:
            img (np.ndarray): The input image to be preprocessed.

        Returns:
            Tuple[np.ndarray, Tuple[float, float]]: A tuple containing:
                - The preprocessed image (np.ndarray).
                - A tuple of two float values representing the padding applied (top/bottom, left/right).
        """
        img, pad = self.letterbox(img, (self.in_width, self.in_height))
        img = img[..., ::-1][None]  # N,H,W,C for TFLite
        img = np.ascontiguousarray(img)
        img = img.astype(np.float32)
        return img / 255, pad

    def postprocess(self, img: np.ndarray, outputs: np.ndarray, pad: Tuple[float, float]) -> np.ndarray:
        """
        Performs post-processing on the model's output to extract bounding boxes, scores, and class IDs.

        Args:
            img (numpy.ndarray): The input image.
            outputs (numpy.ndarray): The output of the model.
            pad (Tuple[float, float]): Padding used by letterbox.

        Returns:
            numpy.ndarray: The input image with detections drawn on it.
        """
        outputs[:, 0] -= pad[1]
        outputs[:, 1] -= pad[0]
        outputs[:, :4] *= max(img.shape)

        outputs = outputs.transpose(0, 2, 1)
        outputs[..., 0] -= outputs[..., 2] / 2
        outputs[..., 1] -= outputs[..., 3] / 2

        for out in outputs:
            scores = out[:, 4:].max(-1)
            keep = scores > self.conf
            boxes = out[keep, :4]
            scores = scores[keep]
            class_ids = out[keep, 4:].argmax(-1)

            indices = cv2.dnn.NMSBoxes(boxes, scores, self.conf, self.iou).flatten()

            [self.draw_detections(img, boxes[i], scores[i], class_ids[i]) for i in indices]

        return img

    def detect(self, img_path: str) -> np.ndarray:
        """
        Performs inference using a TFLite model and returns the output image with drawn detections.

        Args:
            img_path (str): The path to the input image file.

        Returns:
            np.ndarray: The output image with drawn detections.
        """
        img = cv2.imread(img_path)
        x, pad = self.preprocess(img)
        if self.int8:
            x = (x / self.in_scale + self.in_zero_point).astype(np.int8)
        self.model.set_tensor(self.in_index, x)

        self.model.invoke()

        y = self.model.get_tensor(self.out_index)

        if self.int8:
            y = (y.astype(np.float32) - self.out_zero_point) * self.out_scale

        return self.postprocess(img, y, pad)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--model",
        type=str,
        default="yolov8n_saved_model/yolov8n_full_integer_quant.tflite",
        help="Path to TFLite model.",
    )
    parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image")
    parser.add_argument("--conf", type=float, default=0.25, help="Confidence threshold")
    parser.add_argument("--iou", type=float, default=0.45, help="NMS IoU threshold")
    parser.add_argument("--metadata", type=str, default="yolov8n_saved_model/metadata.yaml", help="Metadata yaml")
    args = parser.parse_args()

    detector = YOLOv8TFLite(args.model, args.conf, args.iou, args.metadata)
    result = detector.detect(str(ASSETS / "bus.jpg"))

    cv2.imshow("Output", result)
    cv2.waitKey(0)