Spaces:
Running
Running
YOLO_V8::YOLO_V8() { | |
} | |
YOLO_V8::~YOLO_V8() { | |
delete session; | |
} | |
namespace Ort | |
{ | |
template<> | |
struct TypeToTensorType<half> { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16; }; | |
} | |
template<typename T> | |
char* BlobFromImage(cv::Mat& iImg, T& iBlob) { | |
int channels = iImg.channels(); | |
int imgHeight = iImg.rows; | |
int imgWidth = iImg.cols; | |
for (int c = 0; c < channels; c++) | |
{ | |
for (int h = 0; h < imgHeight; h++) | |
{ | |
for (int w = 0; w < imgWidth; w++) | |
{ | |
iBlob[c * imgWidth * imgHeight + h * imgWidth + w] = typename std::remove_pointer<T>::type( | |
(iImg.at<cv::Vec3b>(h, w)[c]) / 255.0f); | |
} | |
} | |
} | |
return RET_OK; | |
} | |
char* YOLO_V8::PreProcess(cv::Mat& iImg, std::vector<int> iImgSize, cv::Mat& oImg) | |
{ | |
if (iImg.channels() == 3) | |
{ | |
oImg = iImg.clone(); | |
cv::cvtColor(oImg, oImg, cv::COLOR_BGR2RGB); | |
} | |
else | |
{ | |
cv::cvtColor(iImg, oImg, cv::COLOR_GRAY2RGB); | |
} | |
switch (modelType) | |
{ | |
case YOLO_DETECT_V8: | |
case YOLO_POSE: | |
case YOLO_DETECT_V8_HALF: | |
case YOLO_POSE_V8_HALF://LetterBox | |
{ | |
if (iImg.cols >= iImg.rows) | |
{ | |
resizeScales = iImg.cols / (float)iImgSize.at(0); | |
cv::resize(oImg, oImg, cv::Size(iImgSize.at(0), int(iImg.rows / resizeScales))); | |
} | |
else | |
{ | |
resizeScales = iImg.rows / (float)iImgSize.at(0); | |
cv::resize(oImg, oImg, cv::Size(int(iImg.cols / resizeScales), iImgSize.at(1))); | |
} | |
cv::Mat tempImg = cv::Mat::zeros(iImgSize.at(0), iImgSize.at(1), CV_8UC3); | |
oImg.copyTo(tempImg(cv::Rect(0, 0, oImg.cols, oImg.rows))); | |
oImg = tempImg; | |
break; | |
} | |
case YOLO_CLS://CenterCrop | |
{ | |
int h = iImg.rows; | |
int w = iImg.cols; | |
int m = min(h, w); | |
int top = (h - m) / 2; | |
int left = (w - m) / 2; | |
cv::resize(oImg(cv::Rect(left, top, m, m)), oImg, cv::Size(iImgSize.at(0), iImgSize.at(1))); | |
break; | |
} | |
} | |
return RET_OK; | |
} | |
char* YOLO_V8::CreateSession(DL_INIT_PARAM& iParams) { | |
char* Ret = RET_OK; | |
std::regex pattern("[\u4e00-\u9fa5]"); | |
bool result = std::regex_search(iParams.modelPath, pattern); | |
if (result) | |
{ | |
Ret = "[YOLO_V8]:Your model path is error.Change your model path without chinese characters."; | |
std::cout << Ret << std::endl; | |
return Ret; | |
} | |
try | |
{ | |
rectConfidenceThreshold = iParams.rectConfidenceThreshold; | |
iouThreshold = iParams.iouThreshold; | |
imgSize = iParams.imgSize; | |
modelType = iParams.modelType; | |
env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "Yolo"); | |
Ort::SessionOptions sessionOption; | |
if (iParams.cudaEnable) | |
{ | |
cudaEnable = iParams.cudaEnable; | |
OrtCUDAProviderOptions cudaOption; | |
cudaOption.device_id = 0; | |
sessionOption.AppendExecutionProvider_CUDA(cudaOption); | |
} | |
sessionOption.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL); | |
sessionOption.SetIntraOpNumThreads(iParams.intraOpNumThreads); | |
sessionOption.SetLogSeverityLevel(iParams.logSeverityLevel); | |
int ModelPathSize = MultiByteToWideChar(CP_UTF8, 0, iParams.modelPath.c_str(), static_cast<int>(iParams.modelPath.length()), nullptr, 0); | |
wchar_t* wide_cstr = new wchar_t[ModelPathSize + 1]; | |
MultiByteToWideChar(CP_UTF8, 0, iParams.modelPath.c_str(), static_cast<int>(iParams.modelPath.length()), wide_cstr, ModelPathSize); | |
wide_cstr[ModelPathSize] = L'\0'; | |
const wchar_t* modelPath = wide_cstr; | |
const char* modelPath = iParams.modelPath.c_str(); | |
session = new Ort::Session(env, modelPath, sessionOption); | |
Ort::AllocatorWithDefaultOptions allocator; | |
size_t inputNodesNum = session->GetInputCount(); | |
for (size_t i = 0; i < inputNodesNum; i++) | |
{ | |
Ort::AllocatedStringPtr input_node_name = session->GetInputNameAllocated(i, allocator); | |
char* temp_buf = new char[50]; | |
strcpy(temp_buf, input_node_name.get()); | |
inputNodeNames.push_back(temp_buf); | |
} | |
size_t OutputNodesNum = session->GetOutputCount(); | |
for (size_t i = 0; i < OutputNodesNum; i++) | |
{ | |
Ort::AllocatedStringPtr output_node_name = session->GetOutputNameAllocated(i, allocator); | |
char* temp_buf = new char[10]; | |
strcpy(temp_buf, output_node_name.get()); | |
outputNodeNames.push_back(temp_buf); | |
} | |
options = Ort::RunOptions{ nullptr }; | |
WarmUpSession(); | |
return RET_OK; | |
} | |
catch (const std::exception& e) | |
{ | |
const char* str1 = "[YOLO_V8]:"; | |
const char* str2 = e.what(); | |
std::string result = std::string(str1) + std::string(str2); | |
char* merged = new char[result.length() + 1]; | |
std::strcpy(merged, result.c_str()); | |
std::cout << merged << std::endl; | |
delete[] merged; | |
return "[YOLO_V8]:Create session failed."; | |
} | |
} | |
char* YOLO_V8::RunSession(cv::Mat& iImg, std::vector<DL_RESULT>& oResult) { | |
clock_t starttime_1 = clock(); | |
char* Ret = RET_OK; | |
cv::Mat processedImg; | |
PreProcess(iImg, imgSize, processedImg); | |
if (modelType < 4) | |
{ | |
float* blob = new float[processedImg.total() * 3]; | |
BlobFromImage(processedImg, blob); | |
std::vector<int64_t> inputNodeDims = { 1, 3, imgSize.at(0), imgSize.at(1) }; | |
TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult); | |
} | |
else | |
{ | |
half* blob = new half[processedImg.total() * 3]; | |
BlobFromImage(processedImg, blob); | |
std::vector<int64_t> inputNodeDims = { 1,3,imgSize.at(0),imgSize.at(1) }; | |
TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult); | |
} | |
return Ret; | |
} | |
template<typename N> | |
char* YOLO_V8::TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std::vector<int64_t>& inputNodeDims, | |
std::vector<DL_RESULT>& oResult) { | |
Ort::Value inputTensor = Ort::Value::CreateTensor<typename std::remove_pointer<N>::type>( | |
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), | |
inputNodeDims.data(), inputNodeDims.size()); | |
clock_t starttime_2 = clock(); | |
auto outputTensor = session->Run(options, inputNodeNames.data(), &inputTensor, 1, outputNodeNames.data(), | |
outputNodeNames.size()); | |
clock_t starttime_3 = clock(); | |
Ort::TypeInfo typeInfo = outputTensor.front().GetTypeInfo(); | |
auto tensor_info = typeInfo.GetTensorTypeAndShapeInfo(); | |
std::vector<int64_t> outputNodeDims = tensor_info.GetShape(); | |
auto output = outputTensor.front().GetTensorMutableData<typename std::remove_pointer<N>::type>(); | |
delete[] blob; | |
switch (modelType) | |
{ | |
case YOLO_DETECT_V8: | |
case YOLO_DETECT_V8_HALF: | |
{ | |
int signalResultNum = outputNodeDims[1];//84 | |
int strideNum = outputNodeDims[2];//8400 | |
std::vector<int> class_ids; | |
std::vector<float> confidences; | |
std::vector<cv::Rect> boxes; | |
cv::Mat rawData; | |
if (modelType == YOLO_DETECT_V8) | |
{ | |
// FP32 | |
rawData = cv::Mat(signalResultNum, strideNum, CV_32F, output); | |
} | |
else | |
{ | |
// FP16 | |
rawData = cv::Mat(signalResultNum, strideNum, CV_16F, output); | |
rawData.convertTo(rawData, CV_32F); | |
} | |
// Note: | |
// ultralytics add transpose operator to the output of yolov8 model.which make yolov8/v5/v7 has same shape | |
// https://github.com/ultralytics/assets/releases/download/v8.3.0/yolov8n.pt | |
rawData = rawData.t(); | |
float* data = (float*)rawData.data; | |
for (int i = 0; i < strideNum; ++i) | |
{ | |
float* classesScores = data + 4; | |
cv::Mat scores(1, this->classes.size(), CV_32FC1, classesScores); | |
cv::Point class_id; | |
double maxClassScore; | |
cv::minMaxLoc(scores, 0, &maxClassScore, 0, &class_id); | |
if (maxClassScore > rectConfidenceThreshold) | |
{ | |
confidences.push_back(maxClassScore); | |
class_ids.push_back(class_id.x); | |
float x = data[0]; | |
float y = data[1]; | |
float w = data[2]; | |
float h = data[3]; | |
int left = int((x - 0.5 * w) * resizeScales); | |
int top = int((y - 0.5 * h) * resizeScales); | |
int width = int(w * resizeScales); | |
int height = int(h * resizeScales); | |
boxes.push_back(cv::Rect(left, top, width, height)); | |
} | |
data += signalResultNum; | |
} | |
std::vector<int> nmsResult; | |
cv::dnn::NMSBoxes(boxes, confidences, rectConfidenceThreshold, iouThreshold, nmsResult); | |
for (int i = 0; i < nmsResult.size(); ++i) | |
{ | |
int idx = nmsResult[i]; | |
DL_RESULT result; | |
result.classId = class_ids[idx]; | |
result.confidence = confidences[idx]; | |
result.box = boxes[idx]; | |
oResult.push_back(result); | |
} | |
clock_t starttime_4 = clock(); | |
double pre_process_time = (double)(starttime_2 - starttime_1) / CLOCKS_PER_SEC * 1000; | |
double process_time = (double)(starttime_3 - starttime_2) / CLOCKS_PER_SEC * 1000; | |
double post_process_time = (double)(starttime_4 - starttime_3) / CLOCKS_PER_SEC * 1000; | |
if (cudaEnable) | |
{ | |
std::cout << "[YOLO_V8(CUDA)]: " << pre_process_time << "ms pre-process, " << process_time << "ms inference, " << post_process_time << "ms post-process." << std::endl; | |
} | |
else | |
{ | |
std::cout << "[YOLO_V8(CPU)]: " << pre_process_time << "ms pre-process, " << process_time << "ms inference, " << post_process_time << "ms post-process." << std::endl; | |
} | |
break; | |
} | |
case YOLO_CLS: | |
case YOLO_CLS_HALF: | |
{ | |
cv::Mat rawData; | |
if (modelType == YOLO_CLS) { | |
// FP32 | |
rawData = cv::Mat(1, this->classes.size(), CV_32F, output); | |
} else { | |
// FP16 | |
rawData = cv::Mat(1, this->classes.size(), CV_16F, output); | |
rawData.convertTo(rawData, CV_32F); | |
} | |
float *data = (float *) rawData.data; | |
DL_RESULT result; | |
for (int i = 0; i < this->classes.size(); i++) | |
{ | |
result.classId = i; | |
result.confidence = data[i]; | |
oResult.push_back(result); | |
} | |
break; | |
} | |
default: | |
std::cout << "[YOLO_V8]: " << "Not support model type." << std::endl; | |
} | |
return RET_OK; | |
} | |
char* YOLO_V8::WarmUpSession() { | |
clock_t starttime_1 = clock(); | |
cv::Mat iImg = cv::Mat(cv::Size(imgSize.at(0), imgSize.at(1)), CV_8UC3); | |
cv::Mat processedImg; | |
PreProcess(iImg, imgSize, processedImg); | |
if (modelType < 4) | |
{ | |
float* blob = new float[iImg.total() * 3]; | |
BlobFromImage(processedImg, blob); | |
std::vector<int64_t> YOLO_input_node_dims = { 1, 3, imgSize.at(0), imgSize.at(1) }; | |
Ort::Value input_tensor = Ort::Value::CreateTensor<float>( | |
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), | |
YOLO_input_node_dims.data(), YOLO_input_node_dims.size()); | |
auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(), | |
outputNodeNames.size()); | |
delete[] blob; | |
clock_t starttime_4 = clock(); | |
double post_process_time = (double)(starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000; | |
if (cudaEnable) | |
{ | |
std::cout << "[YOLO_V8(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl; | |
} | |
} | |
else | |
{ | |
half* blob = new half[iImg.total() * 3]; | |
BlobFromImage(processedImg, blob); | |
std::vector<int64_t> YOLO_input_node_dims = { 1,3,imgSize.at(0),imgSize.at(1) }; | |
Ort::Value input_tensor = Ort::Value::CreateTensor<half>(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), YOLO_input_node_dims.data(), YOLO_input_node_dims.size()); | |
auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(), outputNodeNames.size()); | |
delete[] blob; | |
clock_t starttime_4 = clock(); | |
double post_process_time = (double)(starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000; | |
if (cudaEnable) | |
{ | |
std::cout << "[YOLO_V8(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl; | |
} | |
} | |
return RET_OK; | |
} | |