Spaces:
Running
Running
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license | |
from pathlib import Path | |
from ultralytics import SAM, YOLO | |
def auto_annotate( | |
data, | |
det_model="yolo11x.pt", | |
sam_model="sam_b.pt", | |
device="", | |
conf=0.25, | |
iou=0.45, | |
imgsz=640, | |
max_det=300, | |
classes=None, | |
output_dir=None, | |
): | |
""" | |
Automatically annotates images using a YOLO object detection model and a SAM segmentation model. | |
This function processes images in a specified directory, detects objects using a YOLO model, and then generates | |
segmentation masks using a SAM model. The resulting annotations are saved as text files. | |
Args: | |
data (str): Path to a folder containing images to be annotated. | |
det_model (str): Path or name of the pre-trained YOLO detection model. | |
sam_model (str): Path or name of the pre-trained SAM segmentation model. | |
device (str): Device to run the models on (e.g., 'cpu', 'cuda', '0'). | |
conf (float): Confidence threshold for detection model; default is 0.25. | |
iou (float): IoU threshold for filtering overlapping boxes in detection results; default is 0.45. | |
imgsz (int): Input image resize dimension; default is 640. | |
max_det (int): Limits detections per image to control outputs in dense scenes. | |
classes (list): Filters predictions to specified class IDs, returning only relevant detections. | |
output_dir (str | None): Directory to save the annotated results. If None, a default directory is created. | |
Examples: | |
>>> from ultralytics.data.annotator import auto_annotate | |
>>> auto_annotate(data="ultralytics/assets", det_model="yolo11n.pt", sam_model="mobile_sam.pt") | |
Notes: | |
- The function creates a new directory for output if not specified. | |
- Annotation results are saved as text files with the same names as the input images. | |
- Each line in the output text file represents a detected object with its class ID and segmentation points. | |
""" | |
det_model = YOLO(det_model) | |
sam_model = SAM(sam_model) | |
data = Path(data) | |
if not output_dir: | |
output_dir = data.parent / f"{data.stem}_auto_annotate_labels" | |
Path(output_dir).mkdir(exist_ok=True, parents=True) | |
det_results = det_model( | |
data, stream=True, device=device, conf=conf, iou=iou, imgsz=imgsz, max_det=max_det, classes=classes | |
) | |
for result in det_results: | |
class_ids = result.boxes.cls.int().tolist() # noqa | |
if len(class_ids): | |
boxes = result.boxes.xyxy # Boxes object for bbox outputs | |
sam_results = sam_model(result.orig_img, bboxes=boxes, verbose=False, save=False, device=device) | |
segments = sam_results[0].masks.xyn # noqa | |
with open(f"{Path(output_dir) / Path(result.path).stem}.txt", "w") as f: | |
for i in range(len(segments)): | |
s = segments[i] | |
if len(s) == 0: | |
continue | |
segment = map(str, segments[i].reshape(-1).tolist()) | |
f.write(f"{class_ids[i]} " + " ".join(segment) + "\n") | |