Spaces:
Running
Running
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license | |
import math | |
import random | |
from copy import deepcopy | |
from typing import Tuple, Union | |
import cv2 | |
import numpy as np | |
import torch | |
from PIL import Image | |
from ultralytics.data.utils import polygons2masks, polygons2masks_overlap | |
from ultralytics.utils import LOGGER, colorstr | |
from ultralytics.utils.checks import check_version | |
from ultralytics.utils.instance import Instances | |
from ultralytics.utils.metrics import bbox_ioa | |
from ultralytics.utils.ops import segment2box, xyxyxyxy2xywhr | |
from ultralytics.utils.torch_utils import TORCHVISION_0_10, TORCHVISION_0_11, TORCHVISION_0_13 | |
DEFAULT_MEAN = (0.0, 0.0, 0.0) | |
DEFAULT_STD = (1.0, 1.0, 1.0) | |
DEFAULT_CROP_FRACTION = 1.0 | |
class BaseTransform: | |
""" | |
Base class for image transformations in the Ultralytics library. | |
This class serves as a foundation for implementing various image processing operations, designed to be | |
compatible with both classification and semantic segmentation tasks. | |
Methods: | |
apply_image: Applies image transformations to labels. | |
apply_instances: Applies transformations to object instances in labels. | |
apply_semantic: Applies semantic segmentation to an image. | |
__call__: Applies all label transformations to an image, instances, and semantic masks. | |
Examples: | |
>>> transform = BaseTransform() | |
>>> labels = {"image": np.array(...), "instances": [...], "semantic": np.array(...)} | |
>>> transformed_labels = transform(labels) | |
""" | |
def __init__(self) -> None: | |
""" | |
Initializes the BaseTransform object. | |
This constructor sets up the base transformation object, which can be extended for specific image | |
processing tasks. It is designed to be compatible with both classification and semantic segmentation. | |
Examples: | |
>>> transform = BaseTransform() | |
""" | |
pass | |
def apply_image(self, labels): | |
""" | |
Applies image transformations to labels. | |
This method is intended to be overridden by subclasses to implement specific image transformation | |
logic. In its base form, it returns the input labels unchanged. | |
Args: | |
labels (Any): The input labels to be transformed. The exact type and structure of labels may | |
vary depending on the specific implementation. | |
Returns: | |
(Any): The transformed labels. In the base implementation, this is identical to the input. | |
Examples: | |
>>> transform = BaseTransform() | |
>>> original_labels = [1, 2, 3] | |
>>> transformed_labels = transform.apply_image(original_labels) | |
>>> print(transformed_labels) | |
[1, 2, 3] | |
""" | |
pass | |
def apply_instances(self, labels): | |
""" | |
Applies transformations to object instances in labels. | |
This method is responsible for applying various transformations to object instances within the given | |
labels. It is designed to be overridden by subclasses to implement specific instance transformation | |
logic. | |
Args: | |
labels (Dict): A dictionary containing label information, including object instances. | |
Returns: | |
(Dict): The modified labels dictionary with transformed object instances. | |
Examples: | |
>>> transform = BaseTransform() | |
>>> labels = {"instances": Instances(xyxy=torch.rand(5, 4), cls=torch.randint(0, 80, (5,)))} | |
>>> transformed_labels = transform.apply_instances(labels) | |
""" | |
pass | |
def apply_semantic(self, labels): | |
""" | |
Applies semantic segmentation transformations to an image. | |
This method is intended to be overridden by subclasses to implement specific semantic segmentation | |
transformations. In its base form, it does not perform any operations. | |
Args: | |
labels (Any): The input labels or semantic segmentation mask to be transformed. | |
Returns: | |
(Any): The transformed semantic segmentation mask or labels. | |
Examples: | |
>>> transform = BaseTransform() | |
>>> semantic_mask = np.zeros((100, 100), dtype=np.uint8) | |
>>> transformed_mask = transform.apply_semantic(semantic_mask) | |
""" | |
pass | |
def __call__(self, labels): | |
""" | |
Applies all label transformations to an image, instances, and semantic masks. | |
This method orchestrates the application of various transformations defined in the BaseTransform class | |
to the input labels. It sequentially calls the apply_image and apply_instances methods to process the | |
image and object instances, respectively. | |
Args: | |
labels (Dict): A dictionary containing image data and annotations. Expected keys include 'img' for | |
the image data, and 'instances' for object instances. | |
Returns: | |
(Dict): The input labels dictionary with transformed image and instances. | |
Examples: | |
>>> transform = BaseTransform() | |
>>> labels = {"img": np.random.rand(640, 640, 3), "instances": []} | |
>>> transformed_labels = transform(labels) | |
""" | |
self.apply_image(labels) | |
self.apply_instances(labels) | |
self.apply_semantic(labels) | |
class Compose: | |
""" | |
A class for composing multiple image transformations. | |
Attributes: | |
transforms (List[Callable]): A list of transformation functions to be applied sequentially. | |
Methods: | |
__call__: Applies a series of transformations to input data. | |
append: Appends a new transform to the existing list of transforms. | |
insert: Inserts a new transform at a specified index in the list of transforms. | |
__getitem__: Retrieves a specific transform or a set of transforms using indexing. | |
__setitem__: Sets a specific transform or a set of transforms using indexing. | |
tolist: Converts the list of transforms to a standard Python list. | |
Examples: | |
>>> transforms = [RandomFlip(), RandomPerspective(30)] | |
>>> compose = Compose(transforms) | |
>>> transformed_data = compose(data) | |
>>> compose.append(CenterCrop((224, 224))) | |
>>> compose.insert(0, RandomFlip()) | |
""" | |
def __init__(self, transforms): | |
""" | |
Initializes the Compose object with a list of transforms. | |
Args: | |
transforms (List[Callable]): A list of callable transform objects to be applied sequentially. | |
Examples: | |
>>> from ultralytics.data.augment import Compose, RandomHSV, RandomFlip | |
>>> transforms = [RandomHSV(), RandomFlip()] | |
>>> compose = Compose(transforms) | |
""" | |
self.transforms = transforms if isinstance(transforms, list) else [transforms] | |
def __call__(self, data): | |
""" | |
Applies a series of transformations to input data. This method sequentially applies each transformation in the | |
Compose object's list of transforms to the input data. | |
Args: | |
data (Any): The input data to be transformed. This can be of any type, depending on the | |
transformations in the list. | |
Returns: | |
(Any): The transformed data after applying all transformations in sequence. | |
Examples: | |
>>> transforms = [Transform1(), Transform2(), Transform3()] | |
>>> compose = Compose(transforms) | |
>>> transformed_data = compose(input_data) | |
""" | |
for t in self.transforms: | |
data = t(data) | |
return data | |
def append(self, transform): | |
""" | |
Appends a new transform to the existing list of transforms. | |
Args: | |
transform (BaseTransform): The transformation to be added to the composition. | |
Examples: | |
>>> compose = Compose([RandomFlip(), RandomPerspective()]) | |
>>> compose.append(RandomHSV()) | |
""" | |
self.transforms.append(transform) | |
def insert(self, index, transform): | |
""" | |
Inserts a new transform at a specified index in the existing list of transforms. | |
Args: | |
index (int): The index at which to insert the new transform. | |
transform (BaseTransform): The transform object to be inserted. | |
Examples: | |
>>> compose = Compose([Transform1(), Transform2()]) | |
>>> compose.insert(1, Transform3()) | |
>>> len(compose.transforms) | |
3 | |
""" | |
self.transforms.insert(index, transform) | |
def __getitem__(self, index: Union[list, int]) -> "Compose": | |
""" | |
Retrieves a specific transform or a set of transforms using indexing. | |
Args: | |
index (int | List[int]): Index or list of indices of the transforms to retrieve. | |
Returns: | |
(Compose): A new Compose object containing the selected transform(s). | |
Raises: | |
AssertionError: If the index is not of type int or list. | |
Examples: | |
>>> transforms = [RandomFlip(), RandomPerspective(10), RandomHSV(0.5, 0.5, 0.5)] | |
>>> compose = Compose(transforms) | |
>>> single_transform = compose[1] # Returns a Compose object with only RandomPerspective | |
>>> multiple_transforms = compose[0:2] # Returns a Compose object with RandomFlip and RandomPerspective | |
""" | |
assert isinstance(index, (int, list)), f"The indices should be either list or int type but got {type(index)}" | |
index = [index] if isinstance(index, int) else index | |
return Compose([self.transforms[i] for i in index]) | |
def __setitem__(self, index: Union[list, int], value: Union[list, int]) -> None: | |
""" | |
Sets one or more transforms in the composition using indexing. | |
Args: | |
index (int | List[int]): Index or list of indices to set transforms at. | |
value (Any | List[Any]): Transform or list of transforms to set at the specified index(es). | |
Raises: | |
AssertionError: If index type is invalid, value type doesn't match index type, or index is out of range. | |
Examples: | |
>>> compose = Compose([Transform1(), Transform2(), Transform3()]) | |
>>> compose[1] = NewTransform() # Replace second transform | |
>>> compose[0:2] = [NewTransform1(), NewTransform2()] # Replace first two transforms | |
""" | |
assert isinstance(index, (int, list)), f"The indices should be either list or int type but got {type(index)}" | |
if isinstance(index, list): | |
assert isinstance(value, list), ( | |
f"The indices should be the same type as values, but got {type(index)} and {type(value)}" | |
) | |
if isinstance(index, int): | |
index, value = [index], [value] | |
for i, v in zip(index, value): | |
assert i < len(self.transforms), f"list index {i} out of range {len(self.transforms)}." | |
self.transforms[i] = v | |
def tolist(self): | |
""" | |
Converts the list of transforms to a standard Python list. | |
Returns: | |
(List): A list containing all the transform objects in the Compose instance. | |
Examples: | |
>>> transforms = [RandomFlip(), RandomPerspective(10), CenterCrop()] | |
>>> compose = Compose(transforms) | |
>>> transform_list = compose.tolist() | |
>>> print(len(transform_list)) | |
3 | |
""" | |
return self.transforms | |
def __repr__(self): | |
""" | |
Returns a string representation of the Compose object. | |
Returns: | |
(str): A string representation of the Compose object, including the list of transforms. | |
Examples: | |
>>> transforms = [RandomFlip(), RandomPerspective(degrees=10, translate=0.1, scale=0.1)] | |
>>> compose = Compose(transforms) | |
>>> print(compose) | |
Compose([ | |
RandomFlip(), | |
RandomPerspective(degrees=10, translate=0.1, scale=0.1) | |
]) | |
""" | |
return f"{self.__class__.__name__}({', '.join([f'{t}' for t in self.transforms])})" | |
class BaseMixTransform: | |
""" | |
Base class for mix transformations like MixUp and Mosaic. | |
This class provides a foundation for implementing mix transformations on datasets. It handles the | |
probability-based application of transforms and manages the mixing of multiple images and labels. | |
Attributes: | |
dataset (Any): The dataset object containing images and labels. | |
pre_transform (Callable | None): Optional transform to apply before mixing. | |
p (float): Probability of applying the mix transformation. | |
Methods: | |
__call__: Applies the mix transformation to the input labels. | |
_mix_transform: Abstract method to be implemented by subclasses for specific mix operations. | |
get_indexes: Abstract method to get indexes of images to be mixed. | |
_update_label_text: Updates label text for mixed images. | |
Examples: | |
>>> class CustomMixTransform(BaseMixTransform): | |
... def _mix_transform(self, labels): | |
... # Implement custom mix logic here | |
... return labels | |
... | |
... def get_indexes(self): | |
... return [random.randint(0, len(self.dataset) - 1) for _ in range(3)] | |
>>> dataset = YourDataset() | |
>>> transform = CustomMixTransform(dataset, p=0.5) | |
>>> mixed_labels = transform(original_labels) | |
""" | |
def __init__(self, dataset, pre_transform=None, p=0.0) -> None: | |
""" | |
Initializes the BaseMixTransform object for mix transformations like MixUp and Mosaic. | |
This class serves as a base for implementing mix transformations in image processing pipelines. | |
Args: | |
dataset (Any): The dataset object containing images and labels for mixing. | |
pre_transform (Callable | None): Optional transform to apply before mixing. | |
p (float): Probability of applying the mix transformation. Should be in the range [0.0, 1.0]. | |
Examples: | |
>>> dataset = YOLODataset("path/to/data") | |
>>> pre_transform = Compose([RandomFlip(), RandomPerspective()]) | |
>>> mix_transform = BaseMixTransform(dataset, pre_transform, p=0.5) | |
""" | |
self.dataset = dataset | |
self.pre_transform = pre_transform | |
self.p = p | |
def __call__(self, labels): | |
""" | |
Applies pre-processing transforms and mixup/mosaic transforms to labels data. | |
This method determines whether to apply the mix transform based on a probability factor. If applied, it | |
selects additional images, applies pre-transforms if specified, and then performs the mix transform. | |
Args: | |
labels (Dict): A dictionary containing label data for an image. | |
Returns: | |
(Dict): The transformed labels dictionary, which may include mixed data from other images. | |
Examples: | |
>>> transform = BaseMixTransform(dataset, pre_transform=None, p=0.5) | |
>>> result = transform({"image": img, "bboxes": boxes, "cls": classes}) | |
""" | |
if random.uniform(0, 1) > self.p: | |
return labels | |
# Get index of one or three other images | |
indexes = self.get_indexes() | |
if isinstance(indexes, int): | |
indexes = [indexes] | |
# Get images information will be used for Mosaic or MixUp | |
mix_labels = [self.dataset.get_image_and_label(i) for i in indexes] | |
if self.pre_transform is not None: | |
for i, data in enumerate(mix_labels): | |
mix_labels[i] = self.pre_transform(data) | |
labels["mix_labels"] = mix_labels | |
# Update cls and texts | |
labels = self._update_label_text(labels) | |
# Mosaic or MixUp | |
labels = self._mix_transform(labels) | |
labels.pop("mix_labels", None) | |
return labels | |
def _mix_transform(self, labels): | |
""" | |
Applies MixUp or Mosaic augmentation to the label dictionary. | |
This method should be implemented by subclasses to perform specific mix transformations like MixUp or | |
Mosaic. It modifies the input label dictionary in-place with the augmented data. | |
Args: | |
labels (Dict): A dictionary containing image and label data. Expected to have a 'mix_labels' key | |
with a list of additional image and label data for mixing. | |
Returns: | |
(Dict): The modified labels dictionary with augmented data after applying the mix transform. | |
Examples: | |
>>> transform = BaseMixTransform(dataset) | |
>>> labels = {"image": img, "bboxes": boxes, "mix_labels": [{"image": img2, "bboxes": boxes2}]} | |
>>> augmented_labels = transform._mix_transform(labels) | |
""" | |
raise NotImplementedError | |
def get_indexes(self): | |
""" | |
Gets a list of shuffled indexes for mosaic augmentation. | |
Returns: | |
(List[int]): A list of shuffled indexes from the dataset. | |
Examples: | |
>>> transform = BaseMixTransform(dataset) | |
>>> indexes = transform.get_indexes() | |
>>> print(indexes) # [3, 18, 7, 2] | |
""" | |
raise NotImplementedError | |
def _update_label_text(labels): | |
""" | |
Updates label text and class IDs for mixed labels in image augmentation. | |
This method processes the 'texts' and 'cls' fields of the input labels dictionary and any mixed labels, | |
creating a unified set of text labels and updating class IDs accordingly. | |
Args: | |
labels (Dict): A dictionary containing label information, including 'texts' and 'cls' fields, | |
and optionally a 'mix_labels' field with additional label dictionaries. | |
Returns: | |
(Dict): The updated labels dictionary with unified text labels and updated class IDs. | |
Examples: | |
>>> labels = { | |
... "texts": [["cat"], ["dog"]], | |
... "cls": torch.tensor([[0], [1]]), | |
... "mix_labels": [{"texts": [["bird"], ["fish"]], "cls": torch.tensor([[0], [1]])}], | |
... } | |
>>> updated_labels = self._update_label_text(labels) | |
>>> print(updated_labels["texts"]) | |
[['cat'], ['dog'], ['bird'], ['fish']] | |
>>> print(updated_labels["cls"]) | |
tensor([[0], | |
[1]]) | |
>>> print(updated_labels["mix_labels"][0]["cls"]) | |
tensor([[2], | |
[3]]) | |
""" | |
if "texts" not in labels: | |
return labels | |
mix_texts = sum([labels["texts"]] + [x["texts"] for x in labels["mix_labels"]], []) | |
mix_texts = list({tuple(x) for x in mix_texts}) | |
text2id = {text: i for i, text in enumerate(mix_texts)} | |
for label in [labels] + labels["mix_labels"]: | |
for i, cls in enumerate(label["cls"].squeeze(-1).tolist()): | |
text = label["texts"][int(cls)] | |
label["cls"][i] = text2id[tuple(text)] | |
label["texts"] = mix_texts | |
return labels | |
class Mosaic(BaseMixTransform): | |
""" | |
Mosaic augmentation for image datasets. | |
This class performs mosaic augmentation by combining multiple (4 or 9) images into a single mosaic image. | |
The augmentation is applied to a dataset with a given probability. | |
Attributes: | |
dataset: The dataset on which the mosaic augmentation is applied. | |
imgsz (int): Image size (height and width) after mosaic pipeline of a single image. | |
p (float): Probability of applying the mosaic augmentation. Must be in the range 0-1. | |
n (int): The grid size, either 4 (for 2x2) or 9 (for 3x3). | |
border (Tuple[int, int]): Border size for width and height. | |
Methods: | |
get_indexes: Returns a list of random indexes from the dataset. | |
_mix_transform: Applies mixup transformation to the input image and labels. | |
_mosaic3: Creates a 1x3 image mosaic. | |
_mosaic4: Creates a 2x2 image mosaic. | |
_mosaic9: Creates a 3x3 image mosaic. | |
_update_labels: Updates labels with padding. | |
_cat_labels: Concatenates labels and clips mosaic border instances. | |
Examples: | |
>>> from ultralytics.data.augment import Mosaic | |
>>> dataset = YourDataset(...) # Your image dataset | |
>>> mosaic_aug = Mosaic(dataset, imgsz=640, p=0.5, n=4) | |
>>> augmented_labels = mosaic_aug(original_labels) | |
""" | |
def __init__(self, dataset, imgsz=640, p=1.0, n=4): | |
""" | |
Initializes the Mosaic augmentation object. | |
This class performs mosaic augmentation by combining multiple (4 or 9) images into a single mosaic image. | |
The augmentation is applied to a dataset with a given probability. | |
Args: | |
dataset (Any): The dataset on which the mosaic augmentation is applied. | |
imgsz (int): Image size (height and width) after mosaic pipeline of a single image. | |
p (float): Probability of applying the mosaic augmentation. Must be in the range 0-1. | |
n (int): The grid size, either 4 (for 2x2) or 9 (for 3x3). | |
Examples: | |
>>> from ultralytics.data.augment import Mosaic | |
>>> dataset = YourDataset(...) | |
>>> mosaic_aug = Mosaic(dataset, imgsz=640, p=0.5, n=4) | |
""" | |
assert 0 <= p <= 1.0, f"The probability should be in range [0, 1], but got {p}." | |
assert n in {4, 9}, "grid must be equal to 4 or 9." | |
super().__init__(dataset=dataset, p=p) | |
self.imgsz = imgsz | |
self.border = (-imgsz // 2, -imgsz // 2) # width, height | |
self.n = n | |
def get_indexes(self, buffer=True): | |
""" | |
Returns a list of random indexes from the dataset for mosaic augmentation. | |
This method selects random image indexes either from a buffer or from the entire dataset, depending on | |
the 'buffer' parameter. It is used to choose images for creating mosaic augmentations. | |
Args: | |
buffer (bool): If True, selects images from the dataset buffer. If False, selects from the entire | |
dataset. | |
Returns: | |
(List[int]): A list of random image indexes. The length of the list is n-1, where n is the number | |
of images used in the mosaic (either 3 or 8, depending on whether n is 4 or 9). | |
Examples: | |
>>> mosaic = Mosaic(dataset, imgsz=640, p=1.0, n=4) | |
>>> indexes = mosaic.get_indexes() | |
>>> print(len(indexes)) # Output: 3 | |
""" | |
if buffer: # select images from buffer | |
return random.choices(list(self.dataset.buffer), k=self.n - 1) | |
else: # select any images | |
return [random.randint(0, len(self.dataset) - 1) for _ in range(self.n - 1)] | |
def _mix_transform(self, labels): | |
""" | |
Applies mosaic augmentation to the input image and labels. | |
This method combines multiple images (3, 4, or 9) into a single mosaic image based on the 'n' attribute. | |
It ensures that rectangular annotations are not present and that there are other images available for | |
mosaic augmentation. | |
Args: | |
labels (Dict): A dictionary containing image data and annotations. Expected keys include: | |
- 'rect_shape': Should be None as rect and mosaic are mutually exclusive. | |
- 'mix_labels': A list of dictionaries containing data for other images to be used in the mosaic. | |
Returns: | |
(Dict): A dictionary containing the mosaic-augmented image and updated annotations. | |
Raises: | |
AssertionError: If 'rect_shape' is not None or if 'mix_labels' is empty. | |
Examples: | |
>>> mosaic = Mosaic(dataset, imgsz=640, p=1.0, n=4) | |
>>> augmented_data = mosaic._mix_transform(labels) | |
""" | |
assert labels.get("rect_shape", None) is None, "rect and mosaic are mutually exclusive." | |
assert len(labels.get("mix_labels", [])), "There are no other images for mosaic augment." | |
return ( | |
self._mosaic3(labels) if self.n == 3 else self._mosaic4(labels) if self.n == 4 else self._mosaic9(labels) | |
) # This code is modified for mosaic3 method. | |
def _mosaic3(self, labels): | |
""" | |
Creates a 1x3 image mosaic by combining three images. | |
This method arranges three images in a horizontal layout, with the main image in the center and two | |
additional images on either side. It's part of the Mosaic augmentation technique used in object detection. | |
Args: | |
labels (Dict): A dictionary containing image and label information for the main (center) image. | |
Must include 'img' key with the image array, and 'mix_labels' key with a list of two | |
dictionaries containing information for the side images. | |
Returns: | |
(Dict): A dictionary with the mosaic image and updated labels. Keys include: | |
- 'img' (np.ndarray): The mosaic image array with shape (H, W, C). | |
- Other keys from the input labels, updated to reflect the new image dimensions. | |
Examples: | |
>>> mosaic = Mosaic(dataset, imgsz=640, p=1.0, n=3) | |
>>> labels = { | |
... "img": np.random.rand(480, 640, 3), | |
... "mix_labels": [{"img": np.random.rand(480, 640, 3)} for _ in range(2)], | |
... } | |
>>> result = mosaic._mosaic3(labels) | |
>>> print(result["img"].shape) | |
(640, 640, 3) | |
""" | |
mosaic_labels = [] | |
s = self.imgsz | |
for i in range(3): | |
labels_patch = labels if i == 0 else labels["mix_labels"][i - 1] | |
# Load image | |
img = labels_patch["img"] | |
h, w = labels_patch.pop("resized_shape") | |
# Place img in img3 | |
if i == 0: # center | |
img3 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 3 tiles | |
h0, w0 = h, w | |
c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates | |
elif i == 1: # right | |
c = s + w0, s, s + w0 + w, s + h | |
elif i == 2: # left | |
c = s - w, s + h0 - h, s, s + h0 | |
padw, padh = c[:2] | |
x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coordinates | |
img3[y1:y2, x1:x2] = img[y1 - padh :, x1 - padw :] # img3[ymin:ymax, xmin:xmax] | |
# hp, wp = h, w # height, width previous for next iteration | |
# Labels assuming imgsz*2 mosaic size | |
labels_patch = self._update_labels(labels_patch, padw + self.border[0], padh + self.border[1]) | |
mosaic_labels.append(labels_patch) | |
final_labels = self._cat_labels(mosaic_labels) | |
final_labels["img"] = img3[-self.border[0] : self.border[0], -self.border[1] : self.border[1]] | |
return final_labels | |
def _mosaic4(self, labels): | |
""" | |
Creates a 2x2 image mosaic from four input images. | |
This method combines four images into a single mosaic image by placing them in a 2x2 grid. It also | |
updates the corresponding labels for each image in the mosaic. | |
Args: | |
labels (Dict): A dictionary containing image data and labels for the base image (index 0) and three | |
additional images (indices 1-3) in the 'mix_labels' key. | |
Returns: | |
(Dict): A dictionary containing the mosaic image and updated labels. The 'img' key contains the mosaic | |
image as a numpy array, and other keys contain the combined and adjusted labels for all four images. | |
Examples: | |
>>> mosaic = Mosaic(dataset, imgsz=640, p=1.0, n=4) | |
>>> labels = { | |
... "img": np.random.rand(480, 640, 3), | |
... "mix_labels": [{"img": np.random.rand(480, 640, 3)} for _ in range(3)], | |
... } | |
>>> result = mosaic._mosaic4(labels) | |
>>> assert result["img"].shape == (1280, 1280, 3) | |
""" | |
mosaic_labels = [] | |
s = self.imgsz | |
yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.border) # mosaic center x, y | |
for i in range(4): | |
labels_patch = labels if i == 0 else labels["mix_labels"][i - 1] | |
# Load image | |
img = labels_patch["img"] | |
h, w = labels_patch.pop("resized_shape") | |
# Place img in img4 | |
if i == 0: # top left | |
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles | |
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image) | |
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image) | |
elif i == 1: # top right | |
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc | |
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h | |
elif i == 2: # bottom left | |
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) | |
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) | |
elif i == 3: # bottom right | |
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) | |
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) | |
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] | |
padw = x1a - x1b | |
padh = y1a - y1b | |
labels_patch = self._update_labels(labels_patch, padw, padh) | |
mosaic_labels.append(labels_patch) | |
final_labels = self._cat_labels(mosaic_labels) | |
final_labels["img"] = img4 | |
return final_labels | |
def _mosaic9(self, labels): | |
""" | |
Creates a 3x3 image mosaic from the input image and eight additional images. | |
This method combines nine images into a single mosaic image. The input image is placed at the center, | |
and eight additional images from the dataset are placed around it in a 3x3 grid pattern. | |
Args: | |
labels (Dict): A dictionary containing the input image and its associated labels. It should have | |
the following keys: | |
- 'img' (numpy.ndarray): The input image. | |
- 'resized_shape' (Tuple[int, int]): The shape of the resized image (height, width). | |
- 'mix_labels' (List[Dict]): A list of dictionaries containing information for the additional | |
eight images, each with the same structure as the input labels. | |
Returns: | |
(Dict): A dictionary containing the mosaic image and updated labels. It includes the following keys: | |
- 'img' (numpy.ndarray): The final mosaic image. | |
- Other keys from the input labels, updated to reflect the new mosaic arrangement. | |
Examples: | |
>>> mosaic = Mosaic(dataset, imgsz=640, p=1.0, n=9) | |
>>> input_labels = dataset[0] | |
>>> mosaic_result = mosaic._mosaic9(input_labels) | |
>>> mosaic_image = mosaic_result["img"] | |
""" | |
mosaic_labels = [] | |
s = self.imgsz | |
hp, wp = -1, -1 # height, width previous | |
for i in range(9): | |
labels_patch = labels if i == 0 else labels["mix_labels"][i - 1] | |
# Load image | |
img = labels_patch["img"] | |
h, w = labels_patch.pop("resized_shape") | |
# Place img in img9 | |
if i == 0: # center | |
img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles | |
h0, w0 = h, w | |
c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates | |
elif i == 1: # top | |
c = s, s - h, s + w, s | |
elif i == 2: # top right | |
c = s + wp, s - h, s + wp + w, s | |
elif i == 3: # right | |
c = s + w0, s, s + w0 + w, s + h | |
elif i == 4: # bottom right | |
c = s + w0, s + hp, s + w0 + w, s + hp + h | |
elif i == 5: # bottom | |
c = s + w0 - w, s + h0, s + w0, s + h0 + h | |
elif i == 6: # bottom left | |
c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h | |
elif i == 7: # left | |
c = s - w, s + h0 - h, s, s + h0 | |
elif i == 8: # top left | |
c = s - w, s + h0 - hp - h, s, s + h0 - hp | |
padw, padh = c[:2] | |
x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coordinates | |
# Image | |
img9[y1:y2, x1:x2] = img[y1 - padh :, x1 - padw :] # img9[ymin:ymax, xmin:xmax] | |
hp, wp = h, w # height, width previous for next iteration | |
# Labels assuming imgsz*2 mosaic size | |
labels_patch = self._update_labels(labels_patch, padw + self.border[0], padh + self.border[1]) | |
mosaic_labels.append(labels_patch) | |
final_labels = self._cat_labels(mosaic_labels) | |
final_labels["img"] = img9[-self.border[0] : self.border[0], -self.border[1] : self.border[1]] | |
return final_labels | |
def _update_labels(labels, padw, padh): | |
""" | |
Updates label coordinates with padding values. | |
This method adjusts the bounding box coordinates of object instances in the labels by adding padding | |
values. It also denormalizes the coordinates if they were previously normalized. | |
Args: | |
labels (Dict): A dictionary containing image and instance information. | |
padw (int): Padding width to be added to the x-coordinates. | |
padh (int): Padding height to be added to the y-coordinates. | |
Returns: | |
(Dict): Updated labels dictionary with adjusted instance coordinates. | |
Examples: | |
>>> labels = {"img": np.zeros((100, 100, 3)), "instances": Instances(...)} | |
>>> padw, padh = 50, 50 | |
>>> updated_labels = Mosaic._update_labels(labels, padw, padh) | |
""" | |
nh, nw = labels["img"].shape[:2] | |
labels["instances"].convert_bbox(format="xyxy") | |
labels["instances"].denormalize(nw, nh) | |
labels["instances"].add_padding(padw, padh) | |
return labels | |
def _cat_labels(self, mosaic_labels): | |
""" | |
Concatenates and processes labels for mosaic augmentation. | |
This method combines labels from multiple images used in mosaic augmentation, clips instances to the | |
mosaic border, and removes zero-area boxes. | |
Args: | |
mosaic_labels (List[Dict]): A list of label dictionaries for each image in the mosaic. | |
Returns: | |
(Dict): A dictionary containing concatenated and processed labels for the mosaic image, including: | |
- im_file (str): File path of the first image in the mosaic. | |
- ori_shape (Tuple[int, int]): Original shape of the first image. | |
- resized_shape (Tuple[int, int]): Shape of the mosaic image (imgsz * 2, imgsz * 2). | |
- cls (np.ndarray): Concatenated class labels. | |
- instances (Instances): Concatenated instance annotations. | |
- mosaic_border (Tuple[int, int]): Mosaic border size. | |
- texts (List[str], optional): Text labels if present in the original labels. | |
Examples: | |
>>> mosaic = Mosaic(dataset, imgsz=640) | |
>>> mosaic_labels = [{"cls": np.array([0, 1]), "instances": Instances(...)} for _ in range(4)] | |
>>> result = mosaic._cat_labels(mosaic_labels) | |
>>> print(result.keys()) | |
dict_keys(['im_file', 'ori_shape', 'resized_shape', 'cls', 'instances', 'mosaic_border']) | |
""" | |
if len(mosaic_labels) == 0: | |
return {} | |
cls = [] | |
instances = [] | |
imgsz = self.imgsz * 2 # mosaic imgsz | |
for labels in mosaic_labels: | |
cls.append(labels["cls"]) | |
instances.append(labels["instances"]) | |
# Final labels | |
final_labels = { | |
"im_file": mosaic_labels[0]["im_file"], | |
"ori_shape": mosaic_labels[0]["ori_shape"], | |
"resized_shape": (imgsz, imgsz), | |
"cls": np.concatenate(cls, 0), | |
"instances": Instances.concatenate(instances, axis=0), | |
"mosaic_border": self.border, | |
} | |
final_labels["instances"].clip(imgsz, imgsz) | |
good = final_labels["instances"].remove_zero_area_boxes() | |
final_labels["cls"] = final_labels["cls"][good] | |
if "texts" in mosaic_labels[0]: | |
final_labels["texts"] = mosaic_labels[0]["texts"] | |
return final_labels | |
class MixUp(BaseMixTransform): | |
""" | |
Applies MixUp augmentation to image datasets. | |
This class implements the MixUp augmentation technique as described in the paper "mixup: Beyond Empirical Risk | |
Minimization" (https://arxiv.org/abs/1710.09412). MixUp combines two images and their labels using a random weight. | |
Attributes: | |
dataset (Any): The dataset to which MixUp augmentation will be applied. | |
pre_transform (Callable | None): Optional transform to apply before MixUp. | |
p (float): Probability of applying MixUp augmentation. | |
Methods: | |
get_indexes: Returns a random index from the dataset. | |
_mix_transform: Applies MixUp augmentation to the input labels. | |
Examples: | |
>>> from ultralytics.data.augment import MixUp | |
>>> dataset = YourDataset(...) # Your image dataset | |
>>> mixup = MixUp(dataset, p=0.5) | |
>>> augmented_labels = mixup(original_labels) | |
""" | |
def __init__(self, dataset, pre_transform=None, p=0.0) -> None: | |
""" | |
Initializes the MixUp augmentation object. | |
MixUp is an image augmentation technique that combines two images by taking a weighted sum of their pixel | |
values and labels. This implementation is designed for use with the Ultralytics YOLO framework. | |
Args: | |
dataset (Any): The dataset to which MixUp augmentation will be applied. | |
pre_transform (Callable | None): Optional transform to apply to images before MixUp. | |
p (float): Probability of applying MixUp augmentation to an image. Must be in the range [0, 1]. | |
Examples: | |
>>> from ultralytics.data.dataset import YOLODataset | |
>>> dataset = YOLODataset("path/to/data.yaml") | |
>>> mixup = MixUp(dataset, pre_transform=None, p=0.5) | |
""" | |
super().__init__(dataset=dataset, pre_transform=pre_transform, p=p) | |
def get_indexes(self): | |
""" | |
Get a random index from the dataset. | |
This method returns a single random index from the dataset, which is used to select an image for MixUp | |
augmentation. | |
Returns: | |
(int): A random integer index within the range of the dataset length. | |
Examples: | |
>>> mixup = MixUp(dataset) | |
>>> index = mixup.get_indexes() | |
>>> print(index) | |
42 | |
""" | |
return random.randint(0, len(self.dataset) - 1) | |
def _mix_transform(self, labels): | |
""" | |
Applies MixUp augmentation to the input labels. | |
This method implements the MixUp augmentation technique as described in the paper | |
"mixup: Beyond Empirical Risk Minimization" (https://arxiv.org/abs/1710.09412). | |
Args: | |
labels (Dict): A dictionary containing the original image and label information. | |
Returns: | |
(Dict): A dictionary containing the mixed-up image and combined label information. | |
Examples: | |
>>> mixer = MixUp(dataset) | |
>>> mixed_labels = mixer._mix_transform(labels) | |
""" | |
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0 | |
labels2 = labels["mix_labels"][0] | |
labels["img"] = (labels["img"] * r + labels2["img"] * (1 - r)).astype(np.uint8) | |
labels["instances"] = Instances.concatenate([labels["instances"], labels2["instances"]], axis=0) | |
labels["cls"] = np.concatenate([labels["cls"], labels2["cls"]], 0) | |
return labels | |
class RandomPerspective: | |
""" | |
Implements random perspective and affine transformations on images and corresponding annotations. | |
This class applies random rotations, translations, scaling, shearing, and perspective transformations | |
to images and their associated bounding boxes, segments, and keypoints. It can be used as part of an | |
augmentation pipeline for object detection and instance segmentation tasks. | |
Attributes: | |
degrees (float): Maximum absolute degree range for random rotations. | |
translate (float): Maximum translation as a fraction of the image size. | |
scale (float): Scaling factor range, e.g., scale=0.1 means 0.9-1.1. | |
shear (float): Maximum shear angle in degrees. | |
perspective (float): Perspective distortion factor. | |
border (Tuple[int, int]): Mosaic border size as (x, y). | |
pre_transform (Callable | None): Optional transform to apply before the random perspective. | |
Methods: | |
affine_transform: Applies affine transformations to the input image. | |
apply_bboxes: Transforms bounding boxes using the affine matrix. | |
apply_segments: Transforms segments and generates new bounding boxes. | |
apply_keypoints: Transforms keypoints using the affine matrix. | |
__call__: Applies the random perspective transformation to images and annotations. | |
box_candidates: Filters transformed bounding boxes based on size and aspect ratio. | |
Examples: | |
>>> transform = RandomPerspective(degrees=10, translate=0.1, scale=0.1, shear=10) | |
>>> image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8) | |
>>> labels = {"img": image, "cls": np.array([0, 1]), "instances": Instances(...)} | |
>>> result = transform(labels) | |
>>> transformed_image = result["img"] | |
>>> transformed_instances = result["instances"] | |
""" | |
def __init__( | |
self, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, border=(0, 0), pre_transform=None | |
): | |
""" | |
Initializes RandomPerspective object with transformation parameters. | |
This class implements random perspective and affine transformations on images and corresponding bounding boxes, | |
segments, and keypoints. Transformations include rotation, translation, scaling, and shearing. | |
Args: | |
degrees (float): Degree range for random rotations. | |
translate (float): Fraction of total width and height for random translation. | |
scale (float): Scaling factor interval, e.g., a scale factor of 0.5 allows a resize between 50%-150%. | |
shear (float): Shear intensity (angle in degrees). | |
perspective (float): Perspective distortion factor. | |
border (Tuple[int, int]): Tuple specifying mosaic border (top/bottom, left/right). | |
pre_transform (Callable | None): Function/transform to apply to the image before starting the random | |
transformation. | |
Examples: | |
>>> transform = RandomPerspective(degrees=10.0, translate=0.1, scale=0.5, shear=5.0) | |
>>> result = transform(labels) # Apply random perspective to labels | |
""" | |
self.degrees = degrees | |
self.translate = translate | |
self.scale = scale | |
self.shear = shear | |
self.perspective = perspective | |
self.border = border # mosaic border | |
self.pre_transform = pre_transform | |
def affine_transform(self, img, border): | |
""" | |
Applies a sequence of affine transformations centered around the image center. | |
This function performs a series of geometric transformations on the input image, including | |
translation, perspective change, rotation, scaling, and shearing. The transformations are | |
applied in a specific order to maintain consistency. | |
Args: | |
img (np.ndarray): Input image to be transformed. | |
border (Tuple[int, int]): Border dimensions for the transformed image. | |
Returns: | |
(Tuple[np.ndarray, np.ndarray, float]): A tuple containing: | |
- np.ndarray: Transformed image. | |
- np.ndarray: 3x3 transformation matrix. | |
- float: Scale factor applied during the transformation. | |
Examples: | |
>>> import numpy as np | |
>>> img = np.random.rand(100, 100, 3) | |
>>> border = (10, 10) | |
>>> transformed_img, matrix, scale = affine_transform(img, border) | |
""" | |
# Center | |
C = np.eye(3, dtype=np.float32) | |
C[0, 2] = -img.shape[1] / 2 # x translation (pixels) | |
C[1, 2] = -img.shape[0] / 2 # y translation (pixels) | |
# Perspective | |
P = np.eye(3, dtype=np.float32) | |
P[2, 0] = random.uniform(-self.perspective, self.perspective) # x perspective (about y) | |
P[2, 1] = random.uniform(-self.perspective, self.perspective) # y perspective (about x) | |
# Rotation and Scale | |
R = np.eye(3, dtype=np.float32) | |
a = random.uniform(-self.degrees, self.degrees) | |
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations | |
s = random.uniform(1 - self.scale, 1 + self.scale) | |
# s = 2 ** random.uniform(-scale, scale) | |
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) | |
# Shear | |
S = np.eye(3, dtype=np.float32) | |
S[0, 1] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180) # x shear (deg) | |
S[1, 0] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180) # y shear (deg) | |
# Translation | |
T = np.eye(3, dtype=np.float32) | |
T[0, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[0] # x translation (pixels) | |
T[1, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[1] # y translation (pixels) | |
# Combined rotation matrix | |
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT | |
# Affine image | |
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed | |
if self.perspective: | |
img = cv2.warpPerspective(img, M, dsize=self.size, borderValue=(114, 114, 114)) | |
else: # affine | |
img = cv2.warpAffine(img, M[:2], dsize=self.size, borderValue=(114, 114, 114)) | |
return img, M, s | |
def apply_bboxes(self, bboxes, M): | |
""" | |
Apply affine transformation to bounding boxes. | |
This function applies an affine transformation to a set of bounding boxes using the provided | |
transformation matrix. | |
Args: | |
bboxes (torch.Tensor): Bounding boxes in xyxy format with shape (N, 4), where N is the number | |
of bounding boxes. | |
M (torch.Tensor): Affine transformation matrix with shape (3, 3). | |
Returns: | |
(torch.Tensor): Transformed bounding boxes in xyxy format with shape (N, 4). | |
Examples: | |
>>> bboxes = torch.tensor([[10, 10, 20, 20], [30, 30, 40, 40]]) | |
>>> M = torch.eye(3) | |
>>> transformed_bboxes = apply_bboxes(bboxes, M) | |
""" | |
n = len(bboxes) | |
if n == 0: | |
return bboxes | |
xy = np.ones((n * 4, 3), dtype=bboxes.dtype) | |
xy[:, :2] = bboxes[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1 | |
xy = xy @ M.T # transform | |
xy = (xy[:, :2] / xy[:, 2:3] if self.perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine | |
# Create new boxes | |
x = xy[:, [0, 2, 4, 6]] | |
y = xy[:, [1, 3, 5, 7]] | |
return np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1)), dtype=bboxes.dtype).reshape(4, n).T | |
def apply_segments(self, segments, M): | |
""" | |
Apply affine transformations to segments and generate new bounding boxes. | |
This function applies affine transformations to input segments and generates new bounding boxes based on | |
the transformed segments. It clips the transformed segments to fit within the new bounding boxes. | |
Args: | |
segments (np.ndarray): Input segments with shape (N, M, 2), where N is the number of segments and M is the | |
number of points in each segment. | |
M (np.ndarray): Affine transformation matrix with shape (3, 3). | |
Returns: | |
(Tuple[np.ndarray, np.ndarray]): A tuple containing: | |
- New bounding boxes with shape (N, 4) in xyxy format. | |
- Transformed and clipped segments with shape (N, M, 2). | |
Examples: | |
>>> segments = np.random.rand(10, 500, 2) # 10 segments with 500 points each | |
>>> M = np.eye(3) # Identity transformation matrix | |
>>> new_bboxes, new_segments = apply_segments(segments, M) | |
""" | |
n, num = segments.shape[:2] | |
if n == 0: | |
return [], segments | |
xy = np.ones((n * num, 3), dtype=segments.dtype) | |
segments = segments.reshape(-1, 2) | |
xy[:, :2] = segments | |
xy = xy @ M.T # transform | |
xy = xy[:, :2] / xy[:, 2:3] | |
segments = xy.reshape(n, -1, 2) | |
bboxes = np.stack([segment2box(xy, self.size[0], self.size[1]) for xy in segments], 0) | |
segments[..., 0] = segments[..., 0].clip(bboxes[:, 0:1], bboxes[:, 2:3]) | |
segments[..., 1] = segments[..., 1].clip(bboxes[:, 1:2], bboxes[:, 3:4]) | |
return bboxes, segments | |
def apply_keypoints(self, keypoints, M): | |
""" | |
Applies affine transformation to keypoints. | |
This method transforms the input keypoints using the provided affine transformation matrix. It handles | |
perspective rescaling if necessary and updates the visibility of keypoints that fall outside the image | |
boundaries after transformation. | |
Args: | |
keypoints (np.ndarray): Array of keypoints with shape (N, 17, 3), where N is the number of instances, | |
17 is the number of keypoints per instance, and 3 represents (x, y, visibility). | |
M (np.ndarray): 3x3 affine transformation matrix. | |
Returns: | |
(np.ndarray): Transformed keypoints array with the same shape as input (N, 17, 3). | |
Examples: | |
>>> random_perspective = RandomPerspective() | |
>>> keypoints = np.random.rand(5, 17, 3) # 5 instances, 17 keypoints each | |
>>> M = np.eye(3) # Identity transformation | |
>>> transformed_keypoints = random_perspective.apply_keypoints(keypoints, M) | |
""" | |
n, nkpt = keypoints.shape[:2] | |
if n == 0: | |
return keypoints | |
xy = np.ones((n * nkpt, 3), dtype=keypoints.dtype) | |
visible = keypoints[..., 2].reshape(n * nkpt, 1) | |
xy[:, :2] = keypoints[..., :2].reshape(n * nkpt, 2) | |
xy = xy @ M.T # transform | |
xy = xy[:, :2] / xy[:, 2:3] # perspective rescale or affine | |
out_mask = (xy[:, 0] < 0) | (xy[:, 1] < 0) | (xy[:, 0] > self.size[0]) | (xy[:, 1] > self.size[1]) | |
visible[out_mask] = 0 | |
return np.concatenate([xy, visible], axis=-1).reshape(n, nkpt, 3) | |
def __call__(self, labels): | |
""" | |
Applies random perspective and affine transformations to an image and its associated labels. | |
This method performs a series of transformations including rotation, translation, scaling, shearing, | |
and perspective distortion on the input image and adjusts the corresponding bounding boxes, segments, | |
and keypoints accordingly. | |
Args: | |
labels (Dict): A dictionary containing image data and annotations. | |
Must include: | |
'img' (ndarray): The input image. | |
'cls' (ndarray): Class labels. | |
'instances' (Instances): Object instances with bounding boxes, segments, and keypoints. | |
May include: | |
'mosaic_border' (Tuple[int, int]): Border size for mosaic augmentation. | |
Returns: | |
(Dict): Transformed labels dictionary containing: | |
- 'img' (np.ndarray): The transformed image. | |
- 'cls' (np.ndarray): Updated class labels. | |
- 'instances' (Instances): Updated object instances. | |
- 'resized_shape' (Tuple[int, int]): New image shape after transformation. | |
Examples: | |
>>> transform = RandomPerspective() | |
>>> image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8) | |
>>> labels = { | |
... "img": image, | |
... "cls": np.array([0, 1, 2]), | |
... "instances": Instances(bboxes=np.array([[10, 10, 50, 50], [100, 100, 150, 150]])), | |
... } | |
>>> result = transform(labels) | |
>>> assert result["img"].shape[:2] == result["resized_shape"] | |
""" | |
if self.pre_transform and "mosaic_border" not in labels: | |
labels = self.pre_transform(labels) | |
labels.pop("ratio_pad", None) # do not need ratio pad | |
img = labels["img"] | |
cls = labels["cls"] | |
instances = labels.pop("instances") | |
# Make sure the coord formats are right | |
instances.convert_bbox(format="xyxy") | |
instances.denormalize(*img.shape[:2][::-1]) | |
border = labels.pop("mosaic_border", self.border) | |
self.size = img.shape[1] + border[1] * 2, img.shape[0] + border[0] * 2 # w, h | |
# M is affine matrix | |
# Scale for func:`box_candidates` | |
img, M, scale = self.affine_transform(img, border) | |
bboxes = self.apply_bboxes(instances.bboxes, M) | |
segments = instances.segments | |
keypoints = instances.keypoints | |
# Update bboxes if there are segments. | |
if len(segments): | |
bboxes, segments = self.apply_segments(segments, M) | |
if keypoints is not None: | |
keypoints = self.apply_keypoints(keypoints, M) | |
new_instances = Instances(bboxes, segments, keypoints, bbox_format="xyxy", normalized=False) | |
# Clip | |
new_instances.clip(*self.size) | |
# Filter instances | |
instances.scale(scale_w=scale, scale_h=scale, bbox_only=True) | |
# Make the bboxes have the same scale with new_bboxes | |
i = self.box_candidates( | |
box1=instances.bboxes.T, box2=new_instances.bboxes.T, area_thr=0.01 if len(segments) else 0.10 | |
) | |
labels["instances"] = new_instances[i] | |
labels["cls"] = cls[i] | |
labels["img"] = img | |
labels["resized_shape"] = img.shape[:2] | |
return labels | |
def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): | |
""" | |
Compute candidate boxes for further processing based on size and aspect ratio criteria. | |
This method compares boxes before and after augmentation to determine if they meet specified | |
thresholds for width, height, aspect ratio, and area. It's used to filter out boxes that have | |
been overly distorted or reduced by the augmentation process. | |
Args: | |
box1 (numpy.ndarray): Original boxes before augmentation, shape (4, N) where n is the | |
number of boxes. Format is [x1, y1, x2, y2] in absolute coordinates. | |
box2 (numpy.ndarray): Augmented boxes after transformation, shape (4, N). Format is | |
[x1, y1, x2, y2] in absolute coordinates. | |
wh_thr (float): Width and height threshold in pixels. Boxes smaller than this in either | |
dimension are rejected. | |
ar_thr (float): Aspect ratio threshold. Boxes with an aspect ratio greater than this | |
value are rejected. | |
area_thr (float): Area ratio threshold. Boxes with an area ratio (new/old) less than | |
this value are rejected. | |
eps (float): Small epsilon value to prevent division by zero. | |
Returns: | |
(numpy.ndarray): Boolean array of shape (n) indicating which boxes are candidates. | |
True values correspond to boxes that meet all criteria. | |
Examples: | |
>>> random_perspective = RandomPerspective() | |
>>> box1 = np.array([[0, 0, 100, 100], [0, 0, 50, 50]]).T | |
>>> box2 = np.array([[10, 10, 90, 90], [5, 5, 45, 45]]).T | |
>>> candidates = random_perspective.box_candidates(box1, box2) | |
>>> print(candidates) | |
[True True] | |
""" | |
w1, h1 = box1[2] - box1[0], box1[3] - box1[1] | |
w2, h2 = box2[2] - box2[0], box2[3] - box2[1] | |
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio | |
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates | |
class RandomHSV: | |
""" | |
Randomly adjusts the Hue, Saturation, and Value (HSV) channels of an image. | |
This class applies random HSV augmentation to images within predefined limits set by hgain, sgain, and vgain. | |
Attributes: | |
hgain (float): Maximum variation for hue. Range is typically [0, 1]. | |
sgain (float): Maximum variation for saturation. Range is typically [0, 1]. | |
vgain (float): Maximum variation for value. Range is typically [0, 1]. | |
Methods: | |
__call__: Applies random HSV augmentation to an image. | |
Examples: | |
>>> import numpy as np | |
>>> from ultralytics.data.augment import RandomHSV | |
>>> augmenter = RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5) | |
>>> image = np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8) | |
>>> labels = {"img": image} | |
>>> augmenter(labels) | |
>>> augmented_image = augmented_labels["img"] | |
""" | |
def __init__(self, hgain=0.5, sgain=0.5, vgain=0.5) -> None: | |
""" | |
Initializes the RandomHSV object for random HSV (Hue, Saturation, Value) augmentation. | |
This class applies random adjustments to the HSV channels of an image within specified limits. | |
Args: | |
hgain (float): Maximum variation for hue. Should be in the range [0, 1]. | |
sgain (float): Maximum variation for saturation. Should be in the range [0, 1]. | |
vgain (float): Maximum variation for value. Should be in the range [0, 1]. | |
Examples: | |
>>> hsv_aug = RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5) | |
>>> hsv_aug(image) | |
""" | |
self.hgain = hgain | |
self.sgain = sgain | |
self.vgain = vgain | |
def __call__(self, labels): | |
""" | |
Applies random HSV augmentation to an image within predefined limits. | |
This method modifies the input image by randomly adjusting its Hue, Saturation, and Value (HSV) channels. | |
The adjustments are made within the limits set by hgain, sgain, and vgain during initialization. | |
Args: | |
labels (Dict): A dictionary containing image data and metadata. Must include an 'img' key with | |
the image as a numpy array. | |
Returns: | |
(None): The function modifies the input 'labels' dictionary in-place, updating the 'img' key | |
with the HSV-augmented image. | |
Examples: | |
>>> hsv_augmenter = RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5) | |
>>> labels = {"img": np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)} | |
>>> hsv_augmenter(labels) | |
>>> augmented_img = labels["img"] | |
""" | |
img = labels["img"] | |
if self.hgain or self.sgain or self.vgain: | |
r = np.random.uniform(-1, 1, 3) * [self.hgain, self.sgain, self.vgain] + 1 # random gains | |
hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV)) | |
dtype = img.dtype # uint8 | |
x = np.arange(0, 256, dtype=r.dtype) | |
lut_hue = ((x * r[0]) % 180).astype(dtype) | |
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) | |
lut_val = np.clip(x * r[2], 0, 255).astype(dtype) | |
im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))) | |
cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed | |
return labels | |
class RandomFlip: | |
""" | |
Applies a random horizontal or vertical flip to an image with a given probability. | |
This class performs random image flipping and updates corresponding instance annotations such as | |
bounding boxes and keypoints. | |
Attributes: | |
p (float): Probability of applying the flip. Must be between 0 and 1. | |
direction (str): Direction of flip, either 'horizontal' or 'vertical'. | |
flip_idx (array-like): Index mapping for flipping keypoints, if applicable. | |
Methods: | |
__call__: Applies the random flip transformation to an image and its annotations. | |
Examples: | |
>>> transform = RandomFlip(p=0.5, direction="horizontal") | |
>>> result = transform({"img": image, "instances": instances}) | |
>>> flipped_image = result["img"] | |
>>> flipped_instances = result["instances"] | |
""" | |
def __init__(self, p=0.5, direction="horizontal", flip_idx=None) -> None: | |
""" | |
Initializes the RandomFlip class with probability and direction. | |
This class applies a random horizontal or vertical flip to an image with a given probability. | |
It also updates any instances (bounding boxes, keypoints, etc.) accordingly. | |
Args: | |
p (float): The probability of applying the flip. Must be between 0 and 1. | |
direction (str): The direction to apply the flip. Must be 'horizontal' or 'vertical'. | |
flip_idx (List[int] | None): Index mapping for flipping keypoints, if any. | |
Raises: | |
AssertionError: If direction is not 'horizontal' or 'vertical', or if p is not between 0 and 1. | |
Examples: | |
>>> flip = RandomFlip(p=0.5, direction="horizontal") | |
>>> flip_with_idx = RandomFlip(p=0.7, direction="vertical", flip_idx=[1, 0, 3, 2, 5, 4]) | |
""" | |
assert direction in {"horizontal", "vertical"}, f"Support direction `horizontal` or `vertical`, got {direction}" | |
assert 0 <= p <= 1.0, f"The probability should be in range [0, 1], but got {p}." | |
self.p = p | |
self.direction = direction | |
self.flip_idx = flip_idx | |
def __call__(self, labels): | |
""" | |
Applies random flip to an image and updates any instances like bounding boxes or keypoints accordingly. | |
This method randomly flips the input image either horizontally or vertically based on the initialized | |
probability and direction. It also updates the corresponding instances (bounding boxes, keypoints) to | |
match the flipped image. | |
Args: | |
labels (Dict): A dictionary containing the following keys: | |
'img' (numpy.ndarray): The image to be flipped. | |
'instances' (ultralytics.utils.instance.Instances): An object containing bounding boxes and | |
optionally keypoints. | |
Returns: | |
(Dict): The same dictionary with the flipped image and updated instances: | |
'img' (numpy.ndarray): The flipped image. | |
'instances' (ultralytics.utils.instance.Instances): Updated instances matching the flipped image. | |
Examples: | |
>>> labels = {"img": np.random.rand(640, 640, 3), "instances": Instances(...)} | |
>>> random_flip = RandomFlip(p=0.5, direction="horizontal") | |
>>> flipped_labels = random_flip(labels) | |
""" | |
img = labels["img"] | |
instances = labels.pop("instances") | |
instances.convert_bbox(format="xywh") | |
h, w = img.shape[:2] | |
h = 1 if instances.normalized else h | |
w = 1 if instances.normalized else w | |
# Flip up-down | |
if self.direction == "vertical" and random.random() < self.p: | |
img = np.flipud(img) | |
instances.flipud(h) | |
if self.direction == "horizontal" and random.random() < self.p: | |
img = np.fliplr(img) | |
instances.fliplr(w) | |
# For keypoints | |
if self.flip_idx is not None and instances.keypoints is not None: | |
instances.keypoints = np.ascontiguousarray(instances.keypoints[:, self.flip_idx, :]) | |
labels["img"] = np.ascontiguousarray(img) | |
labels["instances"] = instances | |
return labels | |
class LetterBox: | |
""" | |
Resize image and padding for detection, instance segmentation, pose. | |
This class resizes and pads images to a specified shape while preserving aspect ratio. It also updates | |
corresponding labels and bounding boxes. | |
Attributes: | |
new_shape (tuple): Target shape (height, width) for resizing. | |
auto (bool): Whether to use minimum rectangle. | |
scaleFill (bool): Whether to stretch the image to new_shape. | |
scaleup (bool): Whether to allow scaling up. If False, only scale down. | |
stride (int): Stride for rounding padding. | |
center (bool): Whether to center the image or align to top-left. | |
Methods: | |
__call__: Resize and pad image, update labels and bounding boxes. | |
Examples: | |
>>> transform = LetterBox(new_shape=(640, 640)) | |
>>> result = transform(labels) | |
>>> resized_img = result["img"] | |
>>> updated_instances = result["instances"] | |
""" | |
def __init__(self, new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, center=True, stride=32): | |
""" | |
Initialize LetterBox object for resizing and padding images. | |
This class is designed to resize and pad images for object detection, instance segmentation, and pose estimation | |
tasks. It supports various resizing modes including auto-sizing, scale-fill, and letterboxing. | |
Args: | |
new_shape (Tuple[int, int]): Target size (height, width) for the resized image. | |
auto (bool): If True, use minimum rectangle to resize. If False, use new_shape directly. | |
scaleFill (bool): If True, stretch the image to new_shape without padding. | |
scaleup (bool): If True, allow scaling up. If False, only scale down. | |
center (bool): If True, center the placed image. If False, place image in top-left corner. | |
stride (int): Stride of the model (e.g., 32 for YOLOv5). | |
Attributes: | |
new_shape (Tuple[int, int]): Target size for the resized image. | |
auto (bool): Flag for using minimum rectangle resizing. | |
scaleFill (bool): Flag for stretching image without padding. | |
scaleup (bool): Flag for allowing upscaling. | |
stride (int): Stride value for ensuring image size is divisible by stride. | |
Examples: | |
>>> letterbox = LetterBox(new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, stride=32) | |
>>> resized_img = letterbox(original_img) | |
""" | |
self.new_shape = new_shape | |
self.auto = auto | |
self.scaleFill = scaleFill | |
self.scaleup = scaleup | |
self.stride = stride | |
self.center = center # Put the image in the middle or top-left | |
def __call__(self, labels=None, image=None): | |
""" | |
Resizes and pads an image for object detection, instance segmentation, or pose estimation tasks. | |
This method applies letterboxing to the input image, which involves resizing the image while maintaining its | |
aspect ratio and adding padding to fit the new shape. It also updates any associated labels accordingly. | |
Args: | |
labels (Dict | None): A dictionary containing image data and associated labels, or empty dict if None. | |
image (np.ndarray | None): The input image as a numpy array. If None, the image is taken from 'labels'. | |
Returns: | |
(Dict | Tuple): If 'labels' is provided, returns an updated dictionary with the resized and padded image, | |
updated labels, and additional metadata. If 'labels' is empty, returns a tuple containing the resized | |
and padded image, and a tuple of (ratio, (left_pad, top_pad)). | |
Examples: | |
>>> letterbox = LetterBox(new_shape=(640, 640)) | |
>>> result = letterbox(labels={"img": np.zeros((480, 640, 3)), "instances": Instances(...)}) | |
>>> resized_img = result["img"] | |
>>> updated_instances = result["instances"] | |
""" | |
if labels is None: | |
labels = {} | |
img = labels.get("img") if image is None else image | |
shape = img.shape[:2] # current shape [height, width] | |
new_shape = labels.pop("rect_shape", self.new_shape) | |
if isinstance(new_shape, int): | |
new_shape = (new_shape, new_shape) | |
# Scale ratio (new / old) | |
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) | |
if not self.scaleup: # only scale down, do not scale up (for better val mAP) | |
r = min(r, 1.0) | |
# Compute padding | |
ratio = r, r # width, height ratios | |
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) | |
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding | |
if self.auto: # minimum rectangle | |
dw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride) # wh padding | |
elif self.scaleFill: # stretch | |
dw, dh = 0.0, 0.0 | |
new_unpad = (new_shape[1], new_shape[0]) | |
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios | |
if self.center: | |
dw /= 2 # divide padding into 2 sides | |
dh /= 2 | |
if shape[::-1] != new_unpad: # resize | |
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) | |
top, bottom = int(round(dh - 0.1)) if self.center else 0, int(round(dh + 0.1)) | |
left, right = int(round(dw - 0.1)) if self.center else 0, int(round(dw + 0.1)) | |
img = cv2.copyMakeBorder( | |
img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114) | |
) # add border | |
if labels.get("ratio_pad"): | |
labels["ratio_pad"] = (labels["ratio_pad"], (left, top)) # for evaluation | |
if len(labels): | |
labels = self._update_labels(labels, ratio, left, top) | |
labels["img"] = img | |
labels["resized_shape"] = new_shape | |
return labels | |
else: | |
return img | |
def _update_labels(labels, ratio, padw, padh): | |
""" | |
Updates labels after applying letterboxing to an image. | |
This method modifies the bounding box coordinates of instances in the labels | |
to account for resizing and padding applied during letterboxing. | |
Args: | |
labels (Dict): A dictionary containing image labels and instances. | |
ratio (Tuple[float, float]): Scaling ratios (width, height) applied to the image. | |
padw (float): Padding width added to the image. | |
padh (float): Padding height added to the image. | |
Returns: | |
(Dict): Updated labels dictionary with modified instance coordinates. | |
Examples: | |
>>> letterbox = LetterBox(new_shape=(640, 640)) | |
>>> labels = {"instances": Instances(...)} | |
>>> ratio = (0.5, 0.5) | |
>>> padw, padh = 10, 20 | |
>>> updated_labels = letterbox._update_labels(labels, ratio, padw, padh) | |
""" | |
labels["instances"].convert_bbox(format="xyxy") | |
labels["instances"].denormalize(*labels["img"].shape[:2][::-1]) | |
labels["instances"].scale(*ratio) | |
labels["instances"].add_padding(padw, padh) | |
return labels | |
class CopyPaste(BaseMixTransform): | |
""" | |
CopyPaste class for applying Copy-Paste augmentation to image datasets. | |
This class implements the Copy-Paste augmentation technique as described in the paper "Simple Copy-Paste is a Strong | |
Data Augmentation Method for Instance Segmentation" (https://arxiv.org/abs/2012.07177). It combines objects from | |
different images to create new training samples. | |
Attributes: | |
dataset (Any): The dataset to which Copy-Paste augmentation will be applied. | |
pre_transform (Callable | None): Optional transform to apply before Copy-Paste. | |
p (float): Probability of applying Copy-Paste augmentation. | |
Methods: | |
get_indexes: Returns a random index from the dataset. | |
_mix_transform: Applies Copy-Paste augmentation to the input labels. | |
__call__: Applies the Copy-Paste transformation to images and annotations. | |
Examples: | |
>>> from ultralytics.data.augment import CopyPaste | |
>>> dataset = YourDataset(...) # Your image dataset | |
>>> copypaste = CopyPaste(dataset, p=0.5) | |
>>> augmented_labels = copypaste(original_labels) | |
""" | |
def __init__(self, dataset=None, pre_transform=None, p=0.5, mode="flip") -> None: | |
"""Initializes CopyPaste object with dataset, pre_transform, and probability of applying MixUp.""" | |
super().__init__(dataset=dataset, pre_transform=pre_transform, p=p) | |
assert mode in {"flip", "mixup"}, f"Expected `mode` to be `flip` or `mixup`, but got {mode}." | |
self.mode = mode | |
def get_indexes(self): | |
"""Returns a list of random indexes from the dataset for CopyPaste augmentation.""" | |
return random.randint(0, len(self.dataset) - 1) | |
def _mix_transform(self, labels): | |
"""Applies Copy-Paste augmentation to combine objects from another image into the current image.""" | |
labels2 = labels["mix_labels"][0] | |
return self._transform(labels, labels2) | |
def __call__(self, labels): | |
"""Applies Copy-Paste augmentation to an image and its labels.""" | |
if len(labels["instances"].segments) == 0 or self.p == 0: | |
return labels | |
if self.mode == "flip": | |
return self._transform(labels) | |
# Get index of one or three other images | |
indexes = self.get_indexes() | |
if isinstance(indexes, int): | |
indexes = [indexes] | |
# Get images information will be used for Mosaic or MixUp | |
mix_labels = [self.dataset.get_image_and_label(i) for i in indexes] | |
if self.pre_transform is not None: | |
for i, data in enumerate(mix_labels): | |
mix_labels[i] = self.pre_transform(data) | |
labels["mix_labels"] = mix_labels | |
# Update cls and texts | |
labels = self._update_label_text(labels) | |
# Mosaic or MixUp | |
labels = self._mix_transform(labels) | |
labels.pop("mix_labels", None) | |
return labels | |
def _transform(self, labels1, labels2={}): | |
"""Applies Copy-Paste augmentation to combine objects from another image into the current image.""" | |
im = labels1["img"] | |
cls = labels1["cls"] | |
h, w = im.shape[:2] | |
instances = labels1.pop("instances") | |
instances.convert_bbox(format="xyxy") | |
instances.denormalize(w, h) | |
im_new = np.zeros(im.shape, np.uint8) | |
instances2 = labels2.pop("instances", None) | |
if instances2 is None: | |
instances2 = deepcopy(instances) | |
instances2.fliplr(w) | |
ioa = bbox_ioa(instances2.bboxes, instances.bboxes) # intersection over area, (N, M) | |
indexes = np.nonzero((ioa < 0.30).all(1))[0] # (N, ) | |
n = len(indexes) | |
sorted_idx = np.argsort(ioa.max(1)[indexes]) | |
indexes = indexes[sorted_idx] | |
for j in indexes[: round(self.p * n)]: | |
cls = np.concatenate((cls, labels2.get("cls", cls)[[j]]), axis=0) | |
instances = Instances.concatenate((instances, instances2[[j]]), axis=0) | |
cv2.drawContours(im_new, instances2.segments[[j]].astype(np.int32), -1, (1, 1, 1), cv2.FILLED) | |
result = labels2.get("img", cv2.flip(im, 1)) # augment segments | |
i = im_new.astype(bool) | |
im[i] = result[i] | |
labels1["img"] = im | |
labels1["cls"] = cls | |
labels1["instances"] = instances | |
return labels1 | |
class Albumentations: | |
""" | |
Albumentations transformations for image augmentation. | |
This class applies various image transformations using the Albumentations library. It includes operations such as | |
Blur, Median Blur, conversion to grayscale, Contrast Limited Adaptive Histogram Equalization (CLAHE), random changes | |
in brightness and contrast, RandomGamma, and image quality reduction through compression. | |
Attributes: | |
p (float): Probability of applying the transformations. | |
transform (albumentations.Compose): Composed Albumentations transforms. | |
contains_spatial (bool): Indicates if the transforms include spatial operations. | |
Methods: | |
__call__: Applies the Albumentations transformations to the input labels. | |
Examples: | |
>>> transform = Albumentations(p=0.5) | |
>>> augmented_labels = transform(labels) | |
Notes: | |
- The Albumentations package must be installed to use this class. | |
- If the package is not installed or an error occurs during initialization, the transform will be set to None. | |
- Spatial transforms are handled differently and require special processing for bounding boxes. | |
""" | |
def __init__(self, p=1.0): | |
""" | |
Initialize the Albumentations transform object for YOLO bbox formatted parameters. | |
This class applies various image augmentations using the Albumentations library, including Blur, Median Blur, | |
conversion to grayscale, Contrast Limited Adaptive Histogram Equalization, random changes of brightness and | |
contrast, RandomGamma, and image quality reduction through compression. | |
Args: | |
p (float): Probability of applying the augmentations. Must be between 0 and 1. | |
Attributes: | |
p (float): Probability of applying the augmentations. | |
transform (albumentations.Compose): Composed Albumentations transforms. | |
contains_spatial (bool): Indicates if the transforms include spatial transformations. | |
Raises: | |
ImportError: If the Albumentations package is not installed. | |
Exception: For any other errors during initialization. | |
Examples: | |
>>> transform = Albumentations(p=0.5) | |
>>> augmented = transform(image=image, bboxes=bboxes, class_labels=classes) | |
>>> augmented_image = augmented["image"] | |
>>> augmented_bboxes = augmented["bboxes"] | |
Notes: | |
- Requires Albumentations version 1.0.3 or higher. | |
- Spatial transforms are handled differently to ensure bbox compatibility. | |
- Some transforms are applied with very low probability (0.01) by default. | |
""" | |
self.p = p | |
self.transform = None | |
prefix = colorstr("albumentations: ") | |
try: | |
import albumentations as A | |
check_version(A.__version__, "1.0.3", hard=True) # version requirement | |
# List of possible spatial transforms | |
spatial_transforms = { | |
"Affine", | |
"BBoxSafeRandomCrop", | |
"CenterCrop", | |
"CoarseDropout", | |
"Crop", | |
"CropAndPad", | |
"CropNonEmptyMaskIfExists", | |
"D4", | |
"ElasticTransform", | |
"Flip", | |
"GridDistortion", | |
"GridDropout", | |
"HorizontalFlip", | |
"Lambda", | |
"LongestMaxSize", | |
"MaskDropout", | |
"MixUp", | |
"Morphological", | |
"NoOp", | |
"OpticalDistortion", | |
"PadIfNeeded", | |
"Perspective", | |
"PiecewiseAffine", | |
"PixelDropout", | |
"RandomCrop", | |
"RandomCropFromBorders", | |
"RandomGridShuffle", | |
"RandomResizedCrop", | |
"RandomRotate90", | |
"RandomScale", | |
"RandomSizedBBoxSafeCrop", | |
"RandomSizedCrop", | |
"Resize", | |
"Rotate", | |
"SafeRotate", | |
"ShiftScaleRotate", | |
"SmallestMaxSize", | |
"Transpose", | |
"VerticalFlip", | |
"XYMasking", | |
} # from https://albumentations.ai/docs/getting_started/transforms_and_targets/#spatial-level-transforms | |
# Transforms | |
T = [ | |
A.Blur(p=0.01), | |
A.MedianBlur(p=0.01), | |
A.ToGray(p=0.01), | |
A.CLAHE(p=0.01), | |
A.RandomBrightnessContrast(p=0.0), | |
A.RandomGamma(p=0.0), | |
A.ImageCompression(quality_lower=75, p=0.0), | |
] | |
# Compose transforms | |
self.contains_spatial = any(transform.__class__.__name__ in spatial_transforms for transform in T) | |
self.transform = ( | |
A.Compose(T, bbox_params=A.BboxParams(format="yolo", label_fields=["class_labels"])) | |
if self.contains_spatial | |
else A.Compose(T) | |
) | |
if hasattr(self.transform, "set_random_seed"): | |
# Required for deterministic transforms in albumentations>=1.4.21 | |
self.transform.set_random_seed(torch.initial_seed()) | |
LOGGER.info(prefix + ", ".join(f"{x}".replace("always_apply=False, ", "") for x in T if x.p)) | |
except ImportError: # package not installed, skip | |
pass | |
except Exception as e: | |
LOGGER.info(f"{prefix}{e}") | |
def __call__(self, labels): | |
""" | |
Applies Albumentations transformations to input labels. | |
This method applies a series of image augmentations using the Albumentations library. It can perform both | |
spatial and non-spatial transformations on the input image and its corresponding labels. | |
Args: | |
labels (Dict): A dictionary containing image data and annotations. Expected keys are: | |
- 'img': numpy.ndarray representing the image | |
- 'cls': numpy.ndarray of class labels | |
- 'instances': object containing bounding boxes and other instance information | |
Returns: | |
(Dict): The input dictionary with augmented image and updated annotations. | |
Examples: | |
>>> transform = Albumentations(p=0.5) | |
>>> labels = { | |
... "img": np.random.rand(640, 640, 3), | |
... "cls": np.array([0, 1]), | |
... "instances": Instances(bboxes=np.array([[0, 0, 1, 1], [0.5, 0.5, 0.8, 0.8]])), | |
... } | |
>>> augmented = transform(labels) | |
>>> assert augmented["img"].shape == (640, 640, 3) | |
Notes: | |
- The method applies transformations with probability self.p. | |
- Spatial transforms update bounding boxes, while non-spatial transforms only modify the image. | |
- Requires the Albumentations library to be installed. | |
""" | |
if self.transform is None or random.random() > self.p: | |
return labels | |
if self.contains_spatial: | |
cls = labels["cls"] | |
if len(cls): | |
im = labels["img"] | |
labels["instances"].convert_bbox("xywh") | |
labels["instances"].normalize(*im.shape[:2][::-1]) | |
bboxes = labels["instances"].bboxes | |
# TODO: add supports of segments and keypoints | |
new = self.transform(image=im, bboxes=bboxes, class_labels=cls) # transformed | |
if len(new["class_labels"]) > 0: # skip update if no bbox in new im | |
labels["img"] = new["image"] | |
labels["cls"] = np.array(new["class_labels"]) | |
bboxes = np.array(new["bboxes"], dtype=np.float32) | |
labels["instances"].update(bboxes=bboxes) | |
else: | |
labels["img"] = self.transform(image=labels["img"])["image"] # transformed | |
return labels | |
class Format: | |
""" | |
A class for formatting image annotations for object detection, instance segmentation, and pose estimation tasks. | |
This class standardizes image and instance annotations to be used by the `collate_fn` in PyTorch DataLoader. | |
Attributes: | |
bbox_format (str): Format for bounding boxes. Options are 'xywh' or 'xyxy'. | |
normalize (bool): Whether to normalize bounding boxes. | |
return_mask (bool): Whether to return instance masks for segmentation. | |
return_keypoint (bool): Whether to return keypoints for pose estimation. | |
return_obb (bool): Whether to return oriented bounding boxes. | |
mask_ratio (int): Downsample ratio for masks. | |
mask_overlap (bool): Whether to overlap masks. | |
batch_idx (bool): Whether to keep batch indexes. | |
bgr (float): The probability to return BGR images. | |
Methods: | |
__call__: Formats labels dictionary with image, classes, bounding boxes, and optionally masks and keypoints. | |
_format_img: Converts image from Numpy array to PyTorch tensor. | |
_format_segments: Converts polygon points to bitmap masks. | |
Examples: | |
>>> formatter = Format(bbox_format="xywh", normalize=True, return_mask=True) | |
>>> formatted_labels = formatter(labels) | |
>>> img = formatted_labels["img"] | |
>>> bboxes = formatted_labels["bboxes"] | |
>>> masks = formatted_labels["masks"] | |
""" | |
def __init__( | |
self, | |
bbox_format="xywh", | |
normalize=True, | |
return_mask=False, | |
return_keypoint=False, | |
return_obb=False, | |
mask_ratio=4, | |
mask_overlap=True, | |
batch_idx=True, | |
bgr=0.0, | |
): | |
""" | |
Initializes the Format class with given parameters for image and instance annotation formatting. | |
This class standardizes image and instance annotations for object detection, instance segmentation, and pose | |
estimation tasks, preparing them for use in PyTorch DataLoader's `collate_fn`. | |
Args: | |
bbox_format (str): Format for bounding boxes. Options are 'xywh', 'xyxy', etc. | |
normalize (bool): Whether to normalize bounding boxes to [0,1]. | |
return_mask (bool): If True, returns instance masks for segmentation tasks. | |
return_keypoint (bool): If True, returns keypoints for pose estimation tasks. | |
return_obb (bool): If True, returns oriented bounding boxes. | |
mask_ratio (int): Downsample ratio for masks. | |
mask_overlap (bool): If True, allows mask overlap. | |
batch_idx (bool): If True, keeps batch indexes. | |
bgr (float): Probability of returning BGR images instead of RGB. | |
Attributes: | |
bbox_format (str): Format for bounding boxes. | |
normalize (bool): Whether bounding boxes are normalized. | |
return_mask (bool): Whether to return instance masks. | |
return_keypoint (bool): Whether to return keypoints. | |
return_obb (bool): Whether to return oriented bounding boxes. | |
mask_ratio (int): Downsample ratio for masks. | |
mask_overlap (bool): Whether masks can overlap. | |
batch_idx (bool): Whether to keep batch indexes. | |
bgr (float): The probability to return BGR images. | |
Examples: | |
>>> format = Format(bbox_format="xyxy", return_mask=True, return_keypoint=False) | |
>>> print(format.bbox_format) | |
xyxy | |
""" | |
self.bbox_format = bbox_format | |
self.normalize = normalize | |
self.return_mask = return_mask # set False when training detection only | |
self.return_keypoint = return_keypoint | |
self.return_obb = return_obb | |
self.mask_ratio = mask_ratio | |
self.mask_overlap = mask_overlap | |
self.batch_idx = batch_idx # keep the batch indexes | |
self.bgr = bgr | |
def __call__(self, labels): | |
""" | |
Formats image annotations for object detection, instance segmentation, and pose estimation tasks. | |
This method standardizes the image and instance annotations to be used by the `collate_fn` in PyTorch | |
DataLoader. It processes the input labels dictionary, converting annotations to the specified format and | |
applying normalization if required. | |
Args: | |
labels (Dict): A dictionary containing image and annotation data with the following keys: | |
- 'img': The input image as a numpy array. | |
- 'cls': Class labels for instances. | |
- 'instances': An Instances object containing bounding boxes, segments, and keypoints. | |
Returns: | |
(Dict): A dictionary with formatted data, including: | |
- 'img': Formatted image tensor. | |
- 'cls': Class label's tensor. | |
- 'bboxes': Bounding boxes tensor in the specified format. | |
- 'masks': Instance masks tensor (if return_mask is True). | |
- 'keypoints': Keypoints tensor (if return_keypoint is True). | |
- 'batch_idx': Batch index tensor (if batch_idx is True). | |
Examples: | |
>>> formatter = Format(bbox_format="xywh", normalize=True, return_mask=True) | |
>>> labels = {"img": np.random.rand(640, 640, 3), "cls": np.array([0, 1]), "instances": Instances(...)} | |
>>> formatted_labels = formatter(labels) | |
>>> print(formatted_labels.keys()) | |
""" | |
img = labels.pop("img") | |
h, w = img.shape[:2] | |
cls = labels.pop("cls") | |
instances = labels.pop("instances") | |
instances.convert_bbox(format=self.bbox_format) | |
instances.denormalize(w, h) | |
nl = len(instances) | |
if self.return_mask: | |
if nl: | |
masks, instances, cls = self._format_segments(instances, cls, w, h) | |
masks = torch.from_numpy(masks) | |
else: | |
masks = torch.zeros( | |
1 if self.mask_overlap else nl, img.shape[0] // self.mask_ratio, img.shape[1] // self.mask_ratio | |
) | |
labels["masks"] = masks | |
labels["img"] = self._format_img(img) | |
labels["cls"] = torch.from_numpy(cls) if nl else torch.zeros(nl) | |
labels["bboxes"] = torch.from_numpy(instances.bboxes) if nl else torch.zeros((nl, 4)) | |
if self.return_keypoint: | |
labels["keypoints"] = torch.from_numpy(instances.keypoints) | |
if self.normalize: | |
labels["keypoints"][..., 0] /= w | |
labels["keypoints"][..., 1] /= h | |
if self.return_obb: | |
labels["bboxes"] = ( | |
xyxyxyxy2xywhr(torch.from_numpy(instances.segments)) if len(instances.segments) else torch.zeros((0, 5)) | |
) | |
# NOTE: need to normalize obb in xywhr format for width-height consistency | |
if self.normalize: | |
labels["bboxes"][:, [0, 2]] /= w | |
labels["bboxes"][:, [1, 3]] /= h | |
# Then we can use collate_fn | |
if self.batch_idx: | |
labels["batch_idx"] = torch.zeros(nl) | |
return labels | |
def _format_img(self, img): | |
""" | |
Formats an image for YOLO from a Numpy array to a PyTorch tensor. | |
This function performs the following operations: | |
1. Ensures the image has 3 dimensions (adds a channel dimension if needed). | |
2. Transposes the image from HWC to CHW format. | |
3. Optionally flips the color channels from RGB to BGR. | |
4. Converts the image to a contiguous array. | |
5. Converts the Numpy array to a PyTorch tensor. | |
Args: | |
img (np.ndarray): Input image as a Numpy array with shape (H, W, C) or (H, W). | |
Returns: | |
(torch.Tensor): Formatted image as a PyTorch tensor with shape (C, H, W). | |
Examples: | |
>>> import numpy as np | |
>>> img = np.random.rand(100, 100, 3) | |
>>> formatted_img = self._format_img(img) | |
>>> print(formatted_img.shape) | |
torch.Size([3, 100, 100]) | |
""" | |
if len(img.shape) < 3: | |
img = np.expand_dims(img, -1) | |
img = img.transpose(2, 0, 1) | |
img = np.ascontiguousarray(img[::-1] if random.uniform(0, 1) > self.bgr else img) | |
img = torch.from_numpy(img) | |
return img | |
def _format_segments(self, instances, cls, w, h): | |
""" | |
Converts polygon segments to bitmap masks. | |
Args: | |
instances (Instances): Object containing segment information. | |
cls (numpy.ndarray): Class labels for each instance. | |
w (int): Width of the image. | |
h (int): Height of the image. | |
Returns: | |
masks (numpy.ndarray): Bitmap masks with shape (N, H, W) or (1, H, W) if mask_overlap is True. | |
instances (Instances): Updated instances object with sorted segments if mask_overlap is True. | |
cls (numpy.ndarray): Updated class labels, sorted if mask_overlap is True. | |
Notes: | |
- If self.mask_overlap is True, masks are overlapped and sorted by area. | |
- If self.mask_overlap is False, each mask is represented separately. | |
- Masks are downsampled according to self.mask_ratio. | |
""" | |
segments = instances.segments | |
if self.mask_overlap: | |
masks, sorted_idx = polygons2masks_overlap((h, w), segments, downsample_ratio=self.mask_ratio) | |
masks = masks[None] # (640, 640) -> (1, 640, 640) | |
instances = instances[sorted_idx] | |
cls = cls[sorted_idx] | |
else: | |
masks = polygons2masks((h, w), segments, color=1, downsample_ratio=self.mask_ratio) | |
return masks, instances, cls | |
class RandomLoadText: | |
""" | |
Randomly samples positive and negative texts and updates class indices accordingly. | |
This class is responsible for sampling texts from a given set of class texts, including both positive | |
(present in the image) and negative (not present in the image) samples. It updates the class indices | |
to reflect the sampled texts and can optionally pad the text list to a fixed length. | |
Attributes: | |
prompt_format (str): Format string for text prompts. | |
neg_samples (Tuple[int, int]): Range for randomly sampling negative texts. | |
max_samples (int): Maximum number of different text samples in one image. | |
padding (bool): Whether to pad texts to max_samples. | |
padding_value (str): The text used for padding when padding is True. | |
Methods: | |
__call__: Processes the input labels and returns updated classes and texts. | |
Examples: | |
>>> loader = RandomLoadText(prompt_format="Object: {}", neg_samples=(5, 10), max_samples=20) | |
>>> labels = {"cls": [0, 1, 2], "texts": [["cat"], ["dog"], ["bird"]], "instances": [...]} | |
>>> updated_labels = loader(labels) | |
>>> print(updated_labels["texts"]) | |
['Object: cat', 'Object: dog', 'Object: bird', 'Object: elephant', 'Object: car'] | |
""" | |
def __init__( | |
self, | |
prompt_format: str = "{}", | |
neg_samples: Tuple[int, int] = (80, 80), | |
max_samples: int = 80, | |
padding: bool = False, | |
padding_value: str = "", | |
) -> None: | |
""" | |
Initializes the RandomLoadText class for randomly sampling positive and negative texts. | |
This class is designed to randomly sample positive texts and negative texts, and update the class | |
indices accordingly to the number of samples. It can be used for text-based object detection tasks. | |
Args: | |
prompt_format (str): Format string for the prompt. Default is '{}'. The format string should | |
contain a single pair of curly braces {} where the text will be inserted. | |
neg_samples (Tuple[int, int]): A range to randomly sample negative texts. The first integer | |
specifies the minimum number of negative samples, and the second integer specifies the | |
maximum. Default is (80, 80). | |
max_samples (int): The maximum number of different text samples in one image. Default is 80. | |
padding (bool): Whether to pad texts to max_samples. If True, the number of texts will always | |
be equal to max_samples. Default is False. | |
padding_value (str): The padding text to use when padding is True. Default is an empty string. | |
Attributes: | |
prompt_format (str): The format string for the prompt. | |
neg_samples (Tuple[int, int]): The range for sampling negative texts. | |
max_samples (int): The maximum number of text samples. | |
padding (bool): Whether padding is enabled. | |
padding_value (str): The value used for padding. | |
Examples: | |
>>> random_load_text = RandomLoadText(prompt_format="Object: {}", neg_samples=(50, 100), max_samples=120) | |
>>> random_load_text.prompt_format | |
'Object: {}' | |
>>> random_load_text.neg_samples | |
(50, 100) | |
>>> random_load_text.max_samples | |
120 | |
""" | |
self.prompt_format = prompt_format | |
self.neg_samples = neg_samples | |
self.max_samples = max_samples | |
self.padding = padding | |
self.padding_value = padding_value | |
def __call__(self, labels: dict) -> dict: | |
""" | |
Randomly samples positive and negative texts and updates class indices accordingly. | |
This method samples positive texts based on the existing class labels in the image, and randomly | |
selects negative texts from the remaining classes. It then updates the class indices to match the | |
new sampled text order. | |
Args: | |
labels (Dict): A dictionary containing image labels and metadata. Must include 'texts' and 'cls' keys. | |
Returns: | |
(Dict): Updated labels dictionary with new 'cls' and 'texts' entries. | |
Examples: | |
>>> loader = RandomLoadText(prompt_format="A photo of {}", neg_samples=(5, 10), max_samples=20) | |
>>> labels = {"cls": np.array([[0], [1], [2]]), "texts": [["dog"], ["cat"], ["bird"]]} | |
>>> updated_labels = loader(labels) | |
""" | |
assert "texts" in labels, "No texts found in labels." | |
class_texts = labels["texts"] | |
num_classes = len(class_texts) | |
cls = np.asarray(labels.pop("cls"), dtype=int) | |
pos_labels = np.unique(cls).tolist() | |
if len(pos_labels) > self.max_samples: | |
pos_labels = random.sample(pos_labels, k=self.max_samples) | |
neg_samples = min(min(num_classes, self.max_samples) - len(pos_labels), random.randint(*self.neg_samples)) | |
neg_labels = [i for i in range(num_classes) if i not in pos_labels] | |
neg_labels = random.sample(neg_labels, k=neg_samples) | |
sampled_labels = pos_labels + neg_labels | |
random.shuffle(sampled_labels) | |
label2ids = {label: i for i, label in enumerate(sampled_labels)} | |
valid_idx = np.zeros(len(labels["instances"]), dtype=bool) | |
new_cls = [] | |
for i, label in enumerate(cls.squeeze(-1).tolist()): | |
if label not in label2ids: | |
continue | |
valid_idx[i] = True | |
new_cls.append([label2ids[label]]) | |
labels["instances"] = labels["instances"][valid_idx] | |
labels["cls"] = np.array(new_cls) | |
# Randomly select one prompt when there's more than one prompts | |
texts = [] | |
for label in sampled_labels: | |
prompts = class_texts[label] | |
assert len(prompts) > 0 | |
prompt = self.prompt_format.format(prompts[random.randrange(len(prompts))]) | |
texts.append(prompt) | |
if self.padding: | |
valid_labels = len(pos_labels) + len(neg_labels) | |
num_padding = self.max_samples - valid_labels | |
if num_padding > 0: | |
texts += [self.padding_value] * num_padding | |
labels["texts"] = texts | |
return labels | |
def v8_transforms(dataset, imgsz, hyp, stretch=False): | |
""" | |
Applies a series of image transformations for training. | |
This function creates a composition of image augmentation techniques to prepare images for YOLO training. | |
It includes operations such as mosaic, copy-paste, random perspective, mixup, and various color adjustments. | |
Args: | |
dataset (Dataset): The dataset object containing image data and annotations. | |
imgsz (int): The target image size for resizing. | |
hyp (Namespace): A dictionary of hyperparameters controlling various aspects of the transformations. | |
stretch (bool): If True, applies stretching to the image. If False, uses LetterBox resizing. | |
Returns: | |
(Compose): A composition of image transformations to be applied to the dataset. | |
Examples: | |
>>> from ultralytics.data.dataset import YOLODataset | |
>>> from ultralytics.utils import IterableSimpleNamespace | |
>>> dataset = YOLODataset(img_path="path/to/images", imgsz=640) | |
>>> hyp = IterableSimpleNamespace(mosaic=1.0, copy_paste=0.5, degrees=10.0, translate=0.2, scale=0.9) | |
>>> transforms = v8_transforms(dataset, imgsz=640, hyp=hyp) | |
>>> augmented_data = transforms(dataset[0]) | |
""" | |
mosaic = Mosaic(dataset, imgsz=imgsz, p=hyp.mosaic) | |
affine = RandomPerspective( | |
degrees=hyp.degrees, | |
translate=hyp.translate, | |
scale=hyp.scale, | |
shear=hyp.shear, | |
perspective=hyp.perspective, | |
pre_transform=None if stretch else LetterBox(new_shape=(imgsz, imgsz)), | |
) | |
pre_transform = Compose([mosaic, affine]) | |
if hyp.copy_paste_mode == "flip": | |
pre_transform.insert(1, CopyPaste(p=hyp.copy_paste, mode=hyp.copy_paste_mode)) | |
else: | |
pre_transform.append( | |
CopyPaste( | |
dataset, | |
pre_transform=Compose([Mosaic(dataset, imgsz=imgsz, p=hyp.mosaic), affine]), | |
p=hyp.copy_paste, | |
mode=hyp.copy_paste_mode, | |
) | |
) | |
flip_idx = dataset.data.get("flip_idx", []) # for keypoints augmentation | |
if dataset.use_keypoints: | |
kpt_shape = dataset.data.get("kpt_shape", None) | |
if len(flip_idx) == 0 and hyp.fliplr > 0.0: | |
hyp.fliplr = 0.0 | |
LOGGER.warning("WARNING ⚠️ No 'flip_idx' array defined in data.yaml, setting augmentation 'fliplr=0.0'") | |
elif flip_idx and (len(flip_idx) != kpt_shape[0]): | |
raise ValueError(f"data.yaml flip_idx={flip_idx} length must be equal to kpt_shape[0]={kpt_shape[0]}") | |
return Compose( | |
[ | |
pre_transform, | |
MixUp(dataset, pre_transform=pre_transform, p=hyp.mixup), | |
Albumentations(p=1.0), | |
RandomHSV(hgain=hyp.hsv_h, sgain=hyp.hsv_s, vgain=hyp.hsv_v), | |
RandomFlip(direction="vertical", p=hyp.flipud), | |
RandomFlip(direction="horizontal", p=hyp.fliplr, flip_idx=flip_idx), | |
] | |
) # transforms | |
# Classification augmentations ----------------------------------------------------------------------------------------- | |
def classify_transforms( | |
size=224, | |
mean=DEFAULT_MEAN, | |
std=DEFAULT_STD, | |
interpolation="BILINEAR", | |
crop_fraction: float = DEFAULT_CROP_FRACTION, | |
): | |
""" | |
Creates a composition of image transforms for classification tasks. | |
This function generates a sequence of torchvision transforms suitable for preprocessing images | |
for classification models during evaluation or inference. The transforms include resizing, | |
center cropping, conversion to tensor, and normalization. | |
Args: | |
size (int | tuple): The target size for the transformed image. If an int, it defines the shortest edge. If a | |
tuple, it defines (height, width). | |
mean (tuple): Mean values for each RGB channel used in normalization. | |
std (tuple): Standard deviation values for each RGB channel used in normalization. | |
interpolation (str): Interpolation method of either 'NEAREST', 'BILINEAR' or 'BICUBIC'. | |
crop_fraction (float): Fraction of the image to be cropped. | |
Returns: | |
(torchvision.transforms.Compose): A composition of torchvision transforms. | |
Examples: | |
>>> transforms = classify_transforms(size=224) | |
>>> img = Image.open("path/to/image.jpg") | |
>>> transformed_img = transforms(img) | |
""" | |
import torchvision.transforms as T # scope for faster 'import ultralytics' | |
if isinstance(size, (tuple, list)): | |
assert len(size) == 2, f"'size' tuples must be length 2, not length {len(size)}" | |
scale_size = tuple(math.floor(x / crop_fraction) for x in size) | |
else: | |
scale_size = math.floor(size / crop_fraction) | |
scale_size = (scale_size, scale_size) | |
# Aspect ratio is preserved, crops center within image, no borders are added, image is lost | |
if scale_size[0] == scale_size[1]: | |
# Simple case, use torchvision built-in Resize with the shortest edge mode (scalar size arg) | |
tfl = [T.Resize(scale_size[0], interpolation=getattr(T.InterpolationMode, interpolation))] | |
else: | |
# Resize the shortest edge to matching target dim for non-square target | |
tfl = [T.Resize(scale_size)] | |
tfl.extend( | |
[ | |
T.CenterCrop(size), | |
T.ToTensor(), | |
T.Normalize(mean=torch.tensor(mean), std=torch.tensor(std)), | |
] | |
) | |
return T.Compose(tfl) | |
# Classification training augmentations -------------------------------------------------------------------------------- | |
def classify_augmentations( | |
size=224, | |
mean=DEFAULT_MEAN, | |
std=DEFAULT_STD, | |
scale=None, | |
ratio=None, | |
hflip=0.5, | |
vflip=0.0, | |
auto_augment=None, | |
hsv_h=0.015, # image HSV-Hue augmentation (fraction) | |
hsv_s=0.4, # image HSV-Saturation augmentation (fraction) | |
hsv_v=0.4, # image HSV-Value augmentation (fraction) | |
force_color_jitter=False, | |
erasing=0.0, | |
interpolation="BILINEAR", | |
): | |
""" | |
Creates a composition of image augmentation transforms for classification tasks. | |
This function generates a set of image transformations suitable for training classification models. It includes | |
options for resizing, flipping, color jittering, auto augmentation, and random erasing. | |
Args: | |
size (int): Target size for the image after transformations. | |
mean (tuple): Mean values for normalization, one per channel. | |
std (tuple): Standard deviation values for normalization, one per channel. | |
scale (tuple | None): Range of size of the origin size cropped. | |
ratio (tuple | None): Range of aspect ratio of the origin aspect ratio cropped. | |
hflip (float): Probability of horizontal flip. | |
vflip (float): Probability of vertical flip. | |
auto_augment (str | None): Auto augmentation policy. Can be 'randaugment', 'augmix', 'autoaugment' or None. | |
hsv_h (float): Image HSV-Hue augmentation factor. | |
hsv_s (float): Image HSV-Saturation augmentation factor. | |
hsv_v (float): Image HSV-Value augmentation factor. | |
force_color_jitter (bool): Whether to apply color jitter even if auto augment is enabled. | |
erasing (float): Probability of random erasing. | |
interpolation (str): Interpolation method of either 'NEAREST', 'BILINEAR' or 'BICUBIC'. | |
Returns: | |
(torchvision.transforms.Compose): A composition of image augmentation transforms. | |
Examples: | |
>>> transforms = classify_augmentations(size=224, auto_augment="randaugment") | |
>>> augmented_image = transforms(original_image) | |
""" | |
# Transforms to apply if Albumentations not installed | |
import torchvision.transforms as T # scope for faster 'import ultralytics' | |
if not isinstance(size, int): | |
raise TypeError(f"classify_transforms() size {size} must be integer, not (list, tuple)") | |
scale = tuple(scale or (0.08, 1.0)) # default imagenet scale range | |
ratio = tuple(ratio or (3.0 / 4.0, 4.0 / 3.0)) # default imagenet ratio range | |
interpolation = getattr(T.InterpolationMode, interpolation) | |
primary_tfl = [T.RandomResizedCrop(size, scale=scale, ratio=ratio, interpolation=interpolation)] | |
if hflip > 0.0: | |
primary_tfl.append(T.RandomHorizontalFlip(p=hflip)) | |
if vflip > 0.0: | |
primary_tfl.append(T.RandomVerticalFlip(p=vflip)) | |
secondary_tfl = [] | |
disable_color_jitter = False | |
if auto_augment: | |
assert isinstance(auto_augment, str), f"Provided argument should be string, but got type {type(auto_augment)}" | |
# color jitter is typically disabled if AA/RA on, | |
# this allows override without breaking old hparm cfgs | |
disable_color_jitter = not force_color_jitter | |
if auto_augment == "randaugment": | |
if TORCHVISION_0_11: | |
secondary_tfl.append(T.RandAugment(interpolation=interpolation)) | |
else: | |
LOGGER.warning('"auto_augment=randaugment" requires torchvision >= 0.11.0. Disabling it.') | |
elif auto_augment == "augmix": | |
if TORCHVISION_0_13: | |
secondary_tfl.append(T.AugMix(interpolation=interpolation)) | |
else: | |
LOGGER.warning('"auto_augment=augmix" requires torchvision >= 0.13.0. Disabling it.') | |
elif auto_augment == "autoaugment": | |
if TORCHVISION_0_10: | |
secondary_tfl.append(T.AutoAugment(interpolation=interpolation)) | |
else: | |
LOGGER.warning('"auto_augment=autoaugment" requires torchvision >= 0.10.0. Disabling it.') | |
else: | |
raise ValueError( | |
f'Invalid auto_augment policy: {auto_augment}. Should be one of "randaugment", ' | |
f'"augmix", "autoaugment" or None' | |
) | |
if not disable_color_jitter: | |
secondary_tfl.append(T.ColorJitter(brightness=hsv_v, contrast=hsv_v, saturation=hsv_s, hue=hsv_h)) | |
final_tfl = [ | |
T.ToTensor(), | |
T.Normalize(mean=torch.tensor(mean), std=torch.tensor(std)), | |
T.RandomErasing(p=erasing, inplace=True), | |
] | |
return T.Compose(primary_tfl + secondary_tfl + final_tfl) | |
# NOTE: keep this class for backward compatibility | |
class ClassifyLetterBox: | |
""" | |
A class for resizing and padding images for classification tasks. | |
This class is designed to be part of a transformation pipeline, e.g., T.Compose([LetterBox(size), ToTensor()]). | |
It resizes and pads images to a specified size while maintaining the original aspect ratio. | |
Attributes: | |
h (int): Target height of the image. | |
w (int): Target width of the image. | |
auto (bool): If True, automatically calculates the short side using stride. | |
stride (int): The stride value, used when 'auto' is True. | |
Methods: | |
__call__: Applies the letterbox transformation to an input image. | |
Examples: | |
>>> transform = ClassifyLetterBox(size=(640, 640), auto=False, stride=32) | |
>>> img = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8) | |
>>> result = transform(img) | |
>>> print(result.shape) | |
(640, 640, 3) | |
""" | |
def __init__(self, size=(640, 640), auto=False, stride=32): | |
""" | |
Initializes the ClassifyLetterBox object for image preprocessing. | |
This class is designed to be part of a transformation pipeline for image classification tasks. It resizes and | |
pads images to a specified size while maintaining the original aspect ratio. | |
Args: | |
size (int | Tuple[int, int]): Target size for the letterboxed image. If an int, a square image of | |
(size, size) is created. If a tuple, it should be (height, width). | |
auto (bool): If True, automatically calculates the short side based on stride. Default is False. | |
stride (int): The stride value, used when 'auto' is True. Default is 32. | |
Attributes: | |
h (int): Target height of the letterboxed image. | |
w (int): Target width of the letterboxed image. | |
auto (bool): Flag indicating whether to automatically calculate short side. | |
stride (int): Stride value for automatic short side calculation. | |
Examples: | |
>>> transform = ClassifyLetterBox(size=224) | |
>>> img = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8) | |
>>> result = transform(img) | |
>>> print(result.shape) | |
(224, 224, 3) | |
""" | |
super().__init__() | |
self.h, self.w = (size, size) if isinstance(size, int) else size | |
self.auto = auto # pass max size integer, automatically solve for short side using stride | |
self.stride = stride # used with auto | |
def __call__(self, im): | |
""" | |
Resizes and pads an image using the letterbox method. | |
This method resizes the input image to fit within the specified dimensions while maintaining its aspect ratio, | |
then pads the resized image to match the target size. | |
Args: | |
im (numpy.ndarray): Input image as a numpy array with shape (H, W, C). | |
Returns: | |
(numpy.ndarray): Resized and padded image as a numpy array with shape (hs, ws, 3), where hs and ws are | |
the target height and width respectively. | |
Examples: | |
>>> letterbox = ClassifyLetterBox(size=(640, 640)) | |
>>> image = np.random.randint(0, 255, (720, 1280, 3), dtype=np.uint8) | |
>>> resized_image = letterbox(image) | |
>>> print(resized_image.shape) | |
(640, 640, 3) | |
""" | |
imh, imw = im.shape[:2] | |
r = min(self.h / imh, self.w / imw) # ratio of new/old dimensions | |
h, w = round(imh * r), round(imw * r) # resized image dimensions | |
# Calculate padding dimensions | |
hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else (self.h, self.w) | |
top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1) | |
# Create padded image | |
im_out = np.full((hs, ws, 3), 114, dtype=im.dtype) | |
im_out[top : top + h, left : left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR) | |
return im_out | |
# NOTE: keep this class for backward compatibility | |
class CenterCrop: | |
""" | |
Applies center cropping to images for classification tasks. | |
This class performs center cropping on input images, resizing them to a specified size while maintaining the aspect | |
ratio. It is designed to be part of a transformation pipeline, e.g., T.Compose([CenterCrop(size), ToTensor()]). | |
Attributes: | |
h (int): Target height of the cropped image. | |
w (int): Target width of the cropped image. | |
Methods: | |
__call__: Applies the center crop transformation to an input image. | |
Examples: | |
>>> transform = CenterCrop(640) | |
>>> image = np.random.randint(0, 255, (1080, 1920, 3), dtype=np.uint8) | |
>>> cropped_image = transform(image) | |
>>> print(cropped_image.shape) | |
(640, 640, 3) | |
""" | |
def __init__(self, size=640): | |
""" | |
Initializes the CenterCrop object for image preprocessing. | |
This class is designed to be part of a transformation pipeline, e.g., T.Compose([CenterCrop(size), ToTensor()]). | |
It performs a center crop on input images to a specified size. | |
Args: | |
size (int | Tuple[int, int]): The desired output size of the crop. If size is an int, a square crop | |
(size, size) is made. If size is a sequence like (h, w), it is used as the output size. | |
Returns: | |
(None): This method initializes the object and does not return anything. | |
Examples: | |
>>> transform = CenterCrop(224) | |
>>> img = np.random.rand(300, 300, 3) | |
>>> cropped_img = transform(img) | |
>>> print(cropped_img.shape) | |
(224, 224, 3) | |
""" | |
super().__init__() | |
self.h, self.w = (size, size) if isinstance(size, int) else size | |
def __call__(self, im): | |
""" | |
Applies center cropping to an input image. | |
This method resizes and crops the center of the image using a letterbox method. It maintains the aspect | |
ratio of the original image while fitting it into the specified dimensions. | |
Args: | |
im (numpy.ndarray | PIL.Image.Image): The input image as a numpy array of shape (H, W, C) or a | |
PIL Image object. | |
Returns: | |
(numpy.ndarray): The center-cropped and resized image as a numpy array of shape (self.h, self.w, C). | |
Examples: | |
>>> transform = CenterCrop(size=224) | |
>>> image = np.random.randint(0, 255, (640, 480, 3), dtype=np.uint8) | |
>>> cropped_image = transform(image) | |
>>> assert cropped_image.shape == (224, 224, 3) | |
""" | |
if isinstance(im, Image.Image): # convert from PIL to numpy array if required | |
im = np.asarray(im) | |
imh, imw = im.shape[:2] | |
m = min(imh, imw) # min dimension | |
top, left = (imh - m) // 2, (imw - m) // 2 | |
return cv2.resize(im[top : top + m, left : left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR) | |
# NOTE: keep this class for backward compatibility | |
class ToTensor: | |
""" | |
Converts an image from a numpy array to a PyTorch tensor. | |
This class is designed to be part of a transformation pipeline, e.g., T.Compose([LetterBox(size), ToTensor()]). | |
Attributes: | |
half (bool): If True, converts the image to half precision (float16). | |
Methods: | |
__call__: Applies the tensor conversion to an input image. | |
Examples: | |
>>> transform = ToTensor(half=True) | |
>>> img = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8) | |
>>> tensor_img = transform(img) | |
>>> print(tensor_img.shape, tensor_img.dtype) | |
torch.Size([3, 640, 640]) torch.float16 | |
Notes: | |
The input image is expected to be in BGR format with shape (H, W, C). | |
The output tensor will be in RGB format with shape (C, H, W), normalized to [0, 1]. | |
""" | |
def __init__(self, half=False): | |
""" | |
Initializes the ToTensor object for converting images to PyTorch tensors. | |
This class is designed to be used as part of a transformation pipeline for image preprocessing in the | |
Ultralytics YOLO framework. It converts numpy arrays or PIL Images to PyTorch tensors, with an option | |
for half-precision (float16) conversion. | |
Args: | |
half (bool): If True, converts the tensor to half precision (float16). Default is False. | |
Examples: | |
>>> transform = ToTensor(half=True) | |
>>> img = np.random.rand(640, 640, 3) | |
>>> tensor_img = transform(img) | |
>>> print(tensor_img.dtype) | |
torch.float16 | |
""" | |
super().__init__() | |
self.half = half | |
def __call__(self, im): | |
""" | |
Transforms an image from a numpy array to a PyTorch tensor. | |
This method converts the input image from a numpy array to a PyTorch tensor, applying optional | |
half-precision conversion and normalization. The image is transposed from HWC to CHW format and | |
the color channels are reversed from BGR to RGB. | |
Args: | |
im (numpy.ndarray): Input image as a numpy array with shape (H, W, C) in BGR order. | |
Returns: | |
(torch.Tensor): The transformed image as a PyTorch tensor in float32 or float16, normalized | |
to [0, 1] with shape (C, H, W) in RGB order. | |
Examples: | |
>>> transform = ToTensor(half=True) | |
>>> img = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8) | |
>>> tensor_img = transform(img) | |
>>> print(tensor_img.shape, tensor_img.dtype) | |
torch.Size([3, 640, 640]) torch.float16 | |
""" | |
im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) # HWC to CHW -> BGR to RGB -> contiguous | |
im = torch.from_numpy(im) # to torch | |
im = im.half() if self.half else im.float() # uint8 to fp16/32 | |
im /= 255.0 # 0-255 to 0.0-1.0 | |
return im | |