# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license import cv2 import numpy as np from ultralytics.solutions.solutions import BaseSolution from ultralytics.utils.plotting import Annotator, colors class TrackZone(BaseSolution): """ A class to manage region-based object tracking in a video stream. This class extends the BaseSolution class and provides functionality for tracking objects within a specific region defined by a polygonal area. Objects outside the region are excluded from tracking. It supports dynamic initialization of the region, allowing either a default region or a user-specified polygon. Attributes: region (ndarray): The polygonal region for tracking, represented as a convex hull. Methods: trackzone: Processes each frame of the video, applying region-based tracking. Examples: >>> tracker = TrackZone() >>> frame = cv2.imread("frame.jpg") >>> processed_frame = tracker.trackzone(frame) >>> cv2.imshow("Tracked Frame", processed_frame) """ def __init__(self, **kwargs): """Initializes the TrackZone class for tracking objects within a defined region in video streams.""" super().__init__(**kwargs) default_region = [(150, 150), (1130, 150), (1130, 570), (150, 570)] self.region = cv2.convexHull(np.array(self.region or default_region, dtype=np.int32)) def trackzone(self, im0): """ Processes the input frame to track objects within a defined region. This method initializes the annotator, creates a mask for the specified region, extracts tracks only from the masked area, and updates tracking information. Objects outside the region are ignored. Args: im0 (numpy.ndarray): The input image or frame to be processed. Returns: (numpy.ndarray): The processed image with tracking id and bounding boxes annotations. Examples: >>> tracker = TrackZone() >>> frame = cv2.imread("path/to/image.jpg") >>> tracker.trackzone(frame) """ self.annotator = Annotator(im0, line_width=self.line_width) # Initialize annotator # Create a mask for the region and extract tracks from the masked image masked_frame = cv2.bitwise_and(im0, im0, mask=cv2.fillPoly(np.zeros_like(im0[:, :, 0]), [self.region], 255)) self.extract_tracks(masked_frame) cv2.polylines(im0, [self.region], isClosed=True, color=(255, 255, 255), thickness=self.line_width * 2) # Iterate over boxes, track ids, classes indexes list and draw bounding boxes for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss): self.annotator.box_label(box, label=f"{self.names[cls]}:{track_id}", color=colors(track_id, True)) self.display_output(im0) # display output with base class function return im0 # return output image for more usage