File size: 11,564 Bytes
22b112d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py 

#From https://github.com/kornia/kornia
import math

import torch
import torch.nn.functional as F
import ldm_patched.modules.model_management

def get_canny_nms_kernel(device=None, dtype=None):
    """Utility function that returns 3x3 kernels for the Canny Non-maximal suppression."""
    return torch.tensor(
        [
            [[[0.0, 0.0, 0.0], [0.0, 1.0, -1.0], [0.0, 0.0, 0.0]]],
            [[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0]]],
            [[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, -1.0, 0.0]]],
            [[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [-1.0, 0.0, 0.0]]],
            [[[0.0, 0.0, 0.0], [-1.0, 1.0, 0.0], [0.0, 0.0, 0.0]]],
            [[[-1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]]],
            [[[0.0, -1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]]],
            [[[0.0, 0.0, -1.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]]],
        ],
        device=device,
        dtype=dtype,
    )


def get_hysteresis_kernel(device=None, dtype=None):
    """Utility function that returns the 3x3 kernels for the Canny hysteresis."""
    return torch.tensor(
        [
            [[[0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0]]],
            [[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0]]],
            [[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0]]],
            [[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [1.0, 0.0, 0.0]]],
            [[[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, 0.0]]],
            [[[1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]],
            [[[0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]],
            [[[0.0, 0.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]],
        ],
        device=device,
        dtype=dtype,
    )

def gaussian_blur_2d(img, kernel_size, sigma):
    ksize_half = (kernel_size - 1) * 0.5

    x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size)

    pdf = torch.exp(-0.5 * (x / sigma).pow(2))

    x_kernel = pdf / pdf.sum()
    x_kernel = x_kernel.to(device=img.device, dtype=img.dtype)

    kernel2d = torch.mm(x_kernel[:, None], x_kernel[None, :])
    kernel2d = kernel2d.expand(img.shape[-3], 1, kernel2d.shape[0], kernel2d.shape[1])

    padding = [kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2]

    img = torch.nn.functional.pad(img, padding, mode="reflect")
    img = torch.nn.functional.conv2d(img, kernel2d, groups=img.shape[-3])

    return img

def get_sobel_kernel2d(device=None, dtype=None):
    kernel_x = torch.tensor([[-1.0, 0.0, 1.0], [-2.0, 0.0, 2.0], [-1.0, 0.0, 1.0]], device=device, dtype=dtype)
    kernel_y = kernel_x.transpose(0, 1)
    return torch.stack([kernel_x, kernel_y])

def spatial_gradient(input, normalized: bool = True):
    r"""Compute the first order image derivative in both x and y using a Sobel operator.
    .. image:: _static/img/spatial_gradient.png
    Args:
        input: input image tensor with shape :math:`(B, C, H, W)`.
        mode: derivatives modality, can be: `sobel` or `diff`.
        order: the order of the derivatives.
        normalized: whether the output is normalized.
    Return:
        the derivatives of the input feature map. with shape :math:`(B, C, 2, H, W)`.
    .. note::
       See a working example `here <https://kornia.readthedocs.io/en/latest/
       filtering_edges.html>`__.
    Examples:
        >>> input = torch.rand(1, 3, 4, 4)
        >>> output = spatial_gradient(input)  # 1x3x2x4x4
        >>> output.shape
        torch.Size([1, 3, 2, 4, 4])
    """
    # KORNIA_CHECK_IS_TENSOR(input)
    # KORNIA_CHECK_SHAPE(input, ['B', 'C', 'H', 'W'])

    # allocate kernel
    kernel = get_sobel_kernel2d(device=input.device, dtype=input.dtype)
    if normalized:
        kernel = normalize_kernel2d(kernel)

    # prepare kernel
    b, c, h, w = input.shape
    tmp_kernel = kernel[:, None, ...]

    # Pad with "replicate for spatial dims, but with zeros for channel
    spatial_pad = [kernel.size(1) // 2, kernel.size(1) // 2, kernel.size(2) // 2, kernel.size(2) // 2]
    out_channels: int = 2
    padded_inp = torch.nn.functional.pad(input.reshape(b * c, 1, h, w), spatial_pad, 'replicate')
    out = F.conv2d(padded_inp, tmp_kernel, groups=1, padding=0, stride=1)
    return out.reshape(b, c, out_channels, h, w)

def rgb_to_grayscale(image, rgb_weights = None):
    r"""Convert a RGB image to grayscale version of image.

    .. image:: _static/img/rgb_to_grayscale.png

    The image data is assumed to be in the range of (0, 1).

    Args:
        image: RGB image to be converted to grayscale with shape :math:`(*,3,H,W)`.
        rgb_weights: Weights that will be applied on each channel (RGB).
            The sum of the weights should add up to one.
    Returns:
        grayscale version of the image with shape :math:`(*,1,H,W)`.

    .. note::
       See a working example `here <https://kornia.readthedocs.io/en/latest/
       color_conversions.html>`__.

    Example:
        >>> input = torch.rand(2, 3, 4, 5)
        >>> gray = rgb_to_grayscale(input) # 2x1x4x5
    """

    if len(image.shape) < 3 or image.shape[-3] != 3:
        raise ValueError(f"Input size must have a shape of (*, 3, H, W). Got {image.shape}")

    if rgb_weights is None:
        # 8 bit images
        if image.dtype == torch.uint8:
            rgb_weights = torch.tensor([76, 150, 29], device=image.device, dtype=torch.uint8)
        # floating point images
        elif image.dtype in (torch.float16, torch.float32, torch.float64):
            rgb_weights = torch.tensor([0.299, 0.587, 0.114], device=image.device, dtype=image.dtype)
        else:
            raise TypeError(f"Unknown data type: {image.dtype}")
    else:
        # is tensor that we make sure is in the same device/dtype
        rgb_weights = rgb_weights.to(image)

    # unpack the color image channels with RGB order
    r: Tensor = image[..., 0:1, :, :]
    g: Tensor = image[..., 1:2, :, :]
    b: Tensor = image[..., 2:3, :, :]

    w_r, w_g, w_b = rgb_weights.unbind()
    return w_r * r + w_g * g + w_b * b

def canny(
    input,
    low_threshold = 0.1,
    high_threshold = 0.2,
    kernel_size  = 5,
    sigma = 1,
    hysteresis = True,
    eps = 1e-6,
):
    r"""Find edges of the input image and filters them using the Canny algorithm.
    .. image:: _static/img/canny.png
    Args:
        input: input image tensor with shape :math:`(B,C,H,W)`.
        low_threshold: lower threshold for the hysteresis procedure.
        high_threshold: upper threshold for the hysteresis procedure.
        kernel_size: the size of the kernel for the gaussian blur.
        sigma: the standard deviation of the kernel for the gaussian blur.
        hysteresis: if True, applies the hysteresis edge tracking.
            Otherwise, the edges are divided between weak (0.5) and strong (1) edges.
        eps: regularization number to avoid NaN during backprop.
    Returns:
        - the canny edge magnitudes map, shape of :math:`(B,1,H,W)`.
        - the canny edge detection filtered by thresholds and hysteresis, shape of :math:`(B,1,H,W)`.
    .. note::
       See a working example `here <https://kornia.readthedocs.io/en/latest/
       canny.html>`__.
    Example:
        >>> input = torch.rand(5, 3, 4, 4)
        >>> magnitude, edges = canny(input)  # 5x3x4x4
        >>> magnitude.shape
        torch.Size([5, 1, 4, 4])
        >>> edges.shape
        torch.Size([5, 1, 4, 4])
    """
    # KORNIA_CHECK_IS_TENSOR(input)
    # KORNIA_CHECK_SHAPE(input, ['B', 'C', 'H', 'W'])
    # KORNIA_CHECK(
    #     low_threshold <= high_threshold,
    #     "Invalid input thresholds. low_threshold should be smaller than the high_threshold. Got: "
    #     f"{low_threshold}>{high_threshold}",
    # )
    # KORNIA_CHECK(0 < low_threshold < 1, f'Invalid low threshold. Should be in range (0, 1). Got: {low_threshold}')
    # KORNIA_CHECK(0 < high_threshold < 1, f'Invalid high threshold. Should be in range (0, 1). Got: {high_threshold}')

    device = input.device
    dtype = input.dtype

    # To Grayscale
    if input.shape[1] == 3:
        input = rgb_to_grayscale(input)

    # Gaussian filter
    blurred: Tensor = gaussian_blur_2d(input, kernel_size, sigma)

    # Compute the gradients
    gradients: Tensor = spatial_gradient(blurred, normalized=False)

    # Unpack the edges
    gx: Tensor = gradients[:, :, 0]
    gy: Tensor = gradients[:, :, 1]

    # Compute gradient magnitude and angle
    magnitude: Tensor = torch.sqrt(gx * gx + gy * gy + eps)
    angle: Tensor = torch.atan2(gy, gx)

    # Radians to Degrees
    angle = 180.0 * angle / math.pi

    # Round angle to the nearest 45 degree
    angle = torch.round(angle / 45) * 45

    # Non-maximal suppression
    nms_kernels: Tensor = get_canny_nms_kernel(device, dtype)
    nms_magnitude: Tensor = F.conv2d(magnitude, nms_kernels, padding=nms_kernels.shape[-1] // 2)

    # Get the indices for both directions
    positive_idx: Tensor = (angle / 45) % 8
    positive_idx = positive_idx.long()

    negative_idx: Tensor = ((angle / 45) + 4) % 8
    negative_idx = negative_idx.long()

    # Apply the non-maximum suppression to the different directions
    channel_select_filtered_positive: Tensor = torch.gather(nms_magnitude, 1, positive_idx)
    channel_select_filtered_negative: Tensor = torch.gather(nms_magnitude, 1, negative_idx)

    channel_select_filtered: Tensor = torch.stack(
        [channel_select_filtered_positive, channel_select_filtered_negative], 1
    )

    is_max: Tensor = channel_select_filtered.min(dim=1)[0] > 0.0

    magnitude = magnitude * is_max

    # Threshold
    edges: Tensor = F.threshold(magnitude, low_threshold, 0.0)

    low: Tensor = magnitude > low_threshold
    high: Tensor = magnitude > high_threshold

    edges = low * 0.5 + high * 0.5
    edges = edges.to(dtype)

    # Hysteresis
    if hysteresis:
        edges_old: Tensor = -torch.ones(edges.shape, device=edges.device, dtype=dtype)
        hysteresis_kernels: Tensor = get_hysteresis_kernel(device, dtype)

        while ((edges_old - edges).abs() != 0).any():
            weak: Tensor = (edges == 0.5).float()
            strong: Tensor = (edges == 1).float()

            hysteresis_magnitude: Tensor = F.conv2d(
                edges, hysteresis_kernels, padding=hysteresis_kernels.shape[-1] // 2
            )
            hysteresis_magnitude = (hysteresis_magnitude == 1).any(1, keepdim=True).to(dtype)
            hysteresis_magnitude = hysteresis_magnitude * weak + strong

            edges_old = edges.clone()
            edges = hysteresis_magnitude + (hysteresis_magnitude == 0) * weak * 0.5

        edges = hysteresis_magnitude

    return magnitude, edges


class Canny:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"image": ("IMAGE",),
                                "low_threshold": ("FLOAT", {"default": 0.4, "min": 0.01, "max": 0.99, "step": 0.01}),
                                "high_threshold": ("FLOAT", {"default": 0.8, "min": 0.01, "max": 0.99, "step": 0.01})
                                }}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "detect_edge"

    CATEGORY = "image/preprocessors"

    def detect_edge(self, image, low_threshold, high_threshold):
        output = canny(image.to(ldm_patched.modules.model_management.get_torch_device()).movedim(-1, 1), low_threshold, high_threshold)
        img_out = output[1].to(ldm_patched.modules.model_management.intermediate_device()).repeat(1, 3, 1, 1).movedim(1, -1)
        return (img_out,)

NODE_CLASS_MAPPINGS = {
    "Canny": Canny,
}