File size: 16,311 Bytes
22b112d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import torch
import copy
import inspect

import ldm_patched.modules.utils
import ldm_patched.modules.model_management

class ModelPatcher:
    def __init__(self, model, load_device, offload_device, size=0, current_device=None, weight_inplace_update=False):
        self.size = size
        self.model = model
        self.patches = {}
        self.backup = {}
        self.object_patches = {}
        self.object_patches_backup = {}
        self.model_options = {"transformer_options":{}}
        self.model_size()
        self.load_device = load_device
        self.offload_device = offload_device
        if current_device is None:
            self.current_device = self.offload_device
        else:
            self.current_device = current_device

        self.weight_inplace_update = weight_inplace_update

    def model_size(self):
        if self.size > 0:
            return self.size
        model_sd = self.model.state_dict()
        self.size = ldm_patched.modules.model_management.module_size(self.model)
        self.model_keys = set(model_sd.keys())
        return self.size

    def clone(self):
        n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device, weight_inplace_update=self.weight_inplace_update)
        n.patches = {}
        for k in self.patches:
            n.patches[k] = self.patches[k][:]

        n.object_patches = self.object_patches.copy()
        n.model_options = copy.deepcopy(self.model_options)
        n.model_keys = self.model_keys
        return n

    def is_clone(self, other):
        if hasattr(other, 'model') and self.model is other.model:
            return True
        return False

    def memory_required(self, input_shape):
        return self.model.memory_required(input_shape=input_shape)

    def set_model_sampler_cfg_function(self, sampler_cfg_function, disable_cfg1_optimization=False):
        if len(inspect.signature(sampler_cfg_function).parameters) == 3:
            self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
        else:
            self.model_options["sampler_cfg_function"] = sampler_cfg_function
        if disable_cfg1_optimization:
            self.model_options["disable_cfg1_optimization"] = True

    def set_model_sampler_post_cfg_function(self, post_cfg_function, disable_cfg1_optimization=False):
        self.model_options["sampler_post_cfg_function"] = self.model_options.get("sampler_post_cfg_function", []) + [post_cfg_function]
        if disable_cfg1_optimization:
            self.model_options["disable_cfg1_optimization"] = True

    def set_model_unet_function_wrapper(self, unet_wrapper_function):
        self.model_options["model_function_wrapper"] = unet_wrapper_function

    def set_model_patch(self, patch, name):
        to = self.model_options["transformer_options"]
        if "patches" not in to:
            to["patches"] = {}
        to["patches"][name] = to["patches"].get(name, []) + [patch]

    def set_model_patch_replace(self, patch, name, block_name, number, transformer_index=None):
        to = self.model_options["transformer_options"]
        if "patches_replace" not in to:
            to["patches_replace"] = {}
        if name not in to["patches_replace"]:
            to["patches_replace"][name] = {}
        if transformer_index is not None:
            block = (block_name, number, transformer_index)
        else:
            block = (block_name, number)
        to["patches_replace"][name][block] = patch

    def set_model_attn1_patch(self, patch):
        self.set_model_patch(patch, "attn1_patch")

    def set_model_attn2_patch(self, patch):
        self.set_model_patch(patch, "attn2_patch")

    def set_model_attn1_replace(self, patch, block_name, number, transformer_index=None):
        self.set_model_patch_replace(patch, "attn1", block_name, number, transformer_index)

    def set_model_attn2_replace(self, patch, block_name, number, transformer_index=None):
        self.set_model_patch_replace(patch, "attn2", block_name, number, transformer_index)

    def set_model_attn1_output_patch(self, patch):
        self.set_model_patch(patch, "attn1_output_patch")

    def set_model_attn2_output_patch(self, patch):
        self.set_model_patch(patch, "attn2_output_patch")

    def set_model_input_block_patch(self, patch):
        self.set_model_patch(patch, "input_block_patch")

    def set_model_input_block_patch_after_skip(self, patch):
        self.set_model_patch(patch, "input_block_patch_after_skip")

    def set_model_output_block_patch(self, patch):
        self.set_model_patch(patch, "output_block_patch")

    def add_object_patch(self, name, obj):
        self.object_patches[name] = obj

    def model_patches_to(self, device):
        to = self.model_options["transformer_options"]
        if "patches" in to:
            patches = to["patches"]
            for name in patches:
                patch_list = patches[name]
                for i in range(len(patch_list)):
                    if hasattr(patch_list[i], "to"):
                        patch_list[i] = patch_list[i].to(device)
        if "patches_replace" in to:
            patches = to["patches_replace"]
            for name in patches:
                patch_list = patches[name]
                for k in patch_list:
                    if hasattr(patch_list[k], "to"):
                        patch_list[k] = patch_list[k].to(device)
        if "model_function_wrapper" in self.model_options:
            wrap_func = self.model_options["model_function_wrapper"]
            if hasattr(wrap_func, "to"):
                self.model_options["model_function_wrapper"] = wrap_func.to(device)

    def model_dtype(self):
        if hasattr(self.model, "get_dtype"):
            return self.model.get_dtype()

    def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
        p = set()
        for k in patches:
            if k in self.model_keys:
                p.add(k)
                current_patches = self.patches.get(k, [])
                current_patches.append((strength_patch, patches[k], strength_model))
                self.patches[k] = current_patches

        return list(p)

    def get_key_patches(self, filter_prefix=None):
        ldm_patched.modules.model_management.unload_model_clones(self)
        model_sd = self.model_state_dict()
        p = {}
        for k in model_sd:
            if filter_prefix is not None:
                if not k.startswith(filter_prefix):
                    continue
            if k in self.patches:
                p[k] = [model_sd[k]] + self.patches[k]
            else:
                p[k] = (model_sd[k],)
        return p

    def model_state_dict(self, filter_prefix=None):
        sd = self.model.state_dict()
        keys = list(sd.keys())
        if filter_prefix is not None:
            for k in keys:
                if not k.startswith(filter_prefix):
                    sd.pop(k)
        return sd

    def patch_model(self, device_to=None, patch_weights=True):
        for k in self.object_patches:
            old = getattr(self.model, k)
            if k not in self.object_patches_backup:
                self.object_patches_backup[k] = old
            setattr(self.model, k, self.object_patches[k])

        if patch_weights:
            model_sd = self.model_state_dict()
            for key in self.patches:
                if key not in model_sd:
                    print("could not patch. key doesn't exist in model:", key)
                    continue

                weight = model_sd[key]

                inplace_update = self.weight_inplace_update

                if key not in self.backup:
                    self.backup[key] = weight.to(device=self.offload_device, copy=inplace_update)

                if device_to is not None:
                    temp_weight = ldm_patched.modules.model_management.cast_to_device(weight, device_to, torch.float32, copy=True)
                else:
                    temp_weight = weight.to(torch.float32, copy=True)
                out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype)
                if inplace_update:
                    ldm_patched.modules.utils.copy_to_param(self.model, key, out_weight)
                else:
                    ldm_patched.modules.utils.set_attr(self.model, key, out_weight)
                del temp_weight

            if device_to is not None:
                self.model.to(device_to)
                self.current_device = device_to

        return self.model

    def calculate_weight(self, patches, weight, key):
        for p in patches:
            alpha = p[0]
            v = p[1]
            strength_model = p[2]

            if strength_model != 1.0:
                weight *= strength_model

            if isinstance(v, list):
                v = (self.calculate_weight(v[1:], v[0].clone(), key), )

            if len(v) == 1:
                patch_type = "diff"
            elif len(v) == 2:
                patch_type = v[0]
                v = v[1]

            if patch_type == "diff":
                w1 = v[0]
                if alpha != 0.0:
                    if w1.shape != weight.shape:
                        print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
                    else:
                        weight += alpha * ldm_patched.modules.model_management.cast_to_device(w1, weight.device, weight.dtype)
            elif patch_type == "lora": #lora/locon
                mat1 = ldm_patched.modules.model_management.cast_to_device(v[0], weight.device, torch.float32)
                mat2 = ldm_patched.modules.model_management.cast_to_device(v[1], weight.device, torch.float32)
                if v[2] is not None:
                    alpha *= v[2] / mat2.shape[0]
                if v[3] is not None:
                    #locon mid weights, hopefully the math is fine because I didn't properly test it
                    mat3 = ldm_patched.modules.model_management.cast_to_device(v[3], weight.device, torch.float32)
                    final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
                    mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
                try:
                    weight += (alpha * torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1))).reshape(weight.shape).type(weight.dtype)
                except Exception as e:
                    print("ERROR", key, e)
            elif patch_type == "lokr":
                w1 = v[0]
                w2 = v[1]
                w1_a = v[3]
                w1_b = v[4]
                w2_a = v[5]
                w2_b = v[6]
                t2 = v[7]
                dim = None

                if w1 is None:
                    dim = w1_b.shape[0]
                    w1 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w1_a, weight.device, torch.float32),
                                  ldm_patched.modules.model_management.cast_to_device(w1_b, weight.device, torch.float32))
                else:
                    w1 = ldm_patched.modules.model_management.cast_to_device(w1, weight.device, torch.float32)

                if w2 is None:
                    dim = w2_b.shape[0]
                    if t2 is None:
                        w2 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w2_a, weight.device, torch.float32),
                                      ldm_patched.modules.model_management.cast_to_device(w2_b, weight.device, torch.float32))
                    else:
                        w2 = torch.einsum('i j k l, j r, i p -> p r k l',
                                          ldm_patched.modules.model_management.cast_to_device(t2, weight.device, torch.float32),
                                          ldm_patched.modules.model_management.cast_to_device(w2_b, weight.device, torch.float32),
                                          ldm_patched.modules.model_management.cast_to_device(w2_a, weight.device, torch.float32))
                else:
                    w2 = ldm_patched.modules.model_management.cast_to_device(w2, weight.device, torch.float32)

                if len(w2.shape) == 4:
                    w1 = w1.unsqueeze(2).unsqueeze(2)
                if v[2] is not None and dim is not None:
                    alpha *= v[2] / dim

                try:
                    weight += alpha * torch.kron(w1, w2).reshape(weight.shape).type(weight.dtype)
                except Exception as e:
                    print("ERROR", key, e)
            elif patch_type == "loha":
                w1a = v[0]
                w1b = v[1]
                if v[2] is not None:
                    alpha *= v[2] / w1b.shape[0]
                w2a = v[3]
                w2b = v[4]
                if v[5] is not None: #cp decomposition
                    t1 = v[5]
                    t2 = v[6]
                    m1 = torch.einsum('i j k l, j r, i p -> p r k l',
                                      ldm_patched.modules.model_management.cast_to_device(t1, weight.device, torch.float32),
                                      ldm_patched.modules.model_management.cast_to_device(w1b, weight.device, torch.float32),
                                      ldm_patched.modules.model_management.cast_to_device(w1a, weight.device, torch.float32))

                    m2 = torch.einsum('i j k l, j r, i p -> p r k l',
                                      ldm_patched.modules.model_management.cast_to_device(t2, weight.device, torch.float32),
                                      ldm_patched.modules.model_management.cast_to_device(w2b, weight.device, torch.float32),
                                      ldm_patched.modules.model_management.cast_to_device(w2a, weight.device, torch.float32))
                else:
                    m1 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w1a, weight.device, torch.float32),
                                  ldm_patched.modules.model_management.cast_to_device(w1b, weight.device, torch.float32))
                    m2 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w2a, weight.device, torch.float32),
                                  ldm_patched.modules.model_management.cast_to_device(w2b, weight.device, torch.float32))

                try:
                    weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype)
                except Exception as e:
                    print("ERROR", key, e)
            elif patch_type == "glora":
                if v[4] is not None:
                    alpha *= v[4] / v[0].shape[0]

                a1 = ldm_patched.modules.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, torch.float32)
                a2 = ldm_patched.modules.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, torch.float32)
                b1 = ldm_patched.modules.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, torch.float32)
                b2 = ldm_patched.modules.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, torch.float32)

                weight += ((torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)) * alpha).reshape(weight.shape).type(weight.dtype)
            else:
                print("patch type not recognized", patch_type, key)

        return weight

    def unpatch_model(self, device_to=None):
        keys = list(self.backup.keys())

        if self.weight_inplace_update:
            for k in keys:
                ldm_patched.modules.utils.copy_to_param(self.model, k, self.backup[k])
        else:
            for k in keys:
                ldm_patched.modules.utils.set_attr(self.model, k, self.backup[k])

        self.backup = {}

        if device_to is not None:
            self.model.to(device_to)
            self.current_device = device_to

        keys = list(self.object_patches_backup.keys())
        for k in keys:
            setattr(self.model, k, self.object_patches_backup[k])

        self.object_patches_backup = {}