File size: 6,960 Bytes
22b112d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import torch
import numpy as np

from PIL import Image, ImageFilter
from modules.util import resample_image, set_image_shape_ceil, get_image_shape_ceil
from modules.upscaler import perform_upscale
import cv2


inpaint_head_model = None


class InpaintHead(torch.nn.Module):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.head = torch.nn.Parameter(torch.empty(size=(320, 5, 3, 3), device='cpu'))

    def __call__(self, x):
        x = torch.nn.functional.pad(x, (1, 1, 1, 1), "replicate")
        return torch.nn.functional.conv2d(input=x, weight=self.head)


current_task = None


def box_blur(x, k):
    x = Image.fromarray(x)
    x = x.filter(ImageFilter.BoxBlur(k))
    return np.array(x)


def max_filter_opencv(x, ksize=3):
    # Use OpenCV maximum filter
    # Make sure the input type is int16
    return cv2.dilate(x, np.ones((ksize, ksize), dtype=np.int16))


def morphological_open(x):
    # Convert array to int16 type via threshold operation
    x_int16 = np.zeros_like(x, dtype=np.int16)
    x_int16[x > 127] = 256

    for i in range(32):
        # Use int16 type to avoid overflow
        maxed = max_filter_opencv(x_int16, ksize=3) - 8
        x_int16 = np.maximum(maxed, x_int16)

    # Clip negative values to 0 and convert back to uint8 type
    x_uint8 = np.clip(x_int16, 0, 255).astype(np.uint8)
    return x_uint8


def up255(x, t=0):
    y = np.zeros_like(x).astype(np.uint8)
    y[x > t] = 255
    return y


def imsave(x, path):
    x = Image.fromarray(x)
    x.save(path)


def regulate_abcd(x, a, b, c, d):
    H, W = x.shape[:2]
    if a < 0:
        a = 0
    if a > H:
        a = H
    if b < 0:
        b = 0
    if b > H:
        b = H
    if c < 0:
        c = 0
    if c > W:
        c = W
    if d < 0:
        d = 0
    if d > W:
        d = W
    return int(a), int(b), int(c), int(d)


def compute_initial_abcd(x):
    indices = np.where(x)
    a = np.min(indices[0])
    b = np.max(indices[0])
    c = np.min(indices[1])
    d = np.max(indices[1])
    abp = (b + a) // 2
    abm = (b - a) // 2
    cdp = (d + c) // 2
    cdm = (d - c) // 2
    l = int(max(abm, cdm) * 1.15)
    a = abp - l
    b = abp + l + 1
    c = cdp - l
    d = cdp + l + 1
    a, b, c, d = regulate_abcd(x, a, b, c, d)
    return a, b, c, d


def solve_abcd(x, a, b, c, d, k):
    k = float(k)
    assert 0.0 <= k <= 1.0

    H, W = x.shape[:2]
    if k == 1.0:
        return 0, H, 0, W
    while True:
        if b - a >= H * k and d - c >= W * k:
            break

        add_h = (b - a) < (d - c)
        add_w = not add_h

        if b - a == H:
            add_w = True

        if d - c == W:
            add_h = True

        if add_h:
            a -= 1
            b += 1

        if add_w:
            c -= 1
            d += 1

        a, b, c, d = regulate_abcd(x, a, b, c, d)
    return a, b, c, d


def fooocus_fill(image, mask):
    current_image = image.copy()
    raw_image = image.copy()
    area = np.where(mask < 127)
    store = raw_image[area]

    for k, repeats in [(512, 2), (256, 2), (128, 4), (64, 4), (33, 8), (15, 8), (5, 16), (3, 16)]:
        for _ in range(repeats):
            current_image = box_blur(current_image, k)
            current_image[area] = store

    return current_image


class InpaintWorker:
    def __init__(self, image, mask, use_fill=True, k=0.618):
        a, b, c, d = compute_initial_abcd(mask > 0)
        a, b, c, d = solve_abcd(mask, a, b, c, d, k=k)

        # interested area
        self.interested_area = (a, b, c, d)
        self.interested_mask = mask[a:b, c:d]
        self.interested_image = image[a:b, c:d]

        # super resolution
        if get_image_shape_ceil(self.interested_image) < 1024:
            self.interested_image = perform_upscale(self.interested_image)

        # resize to make images ready for diffusion
        self.interested_image = set_image_shape_ceil(self.interested_image, 1024)
        self.interested_fill = self.interested_image.copy()
        H, W, C = self.interested_image.shape

        # process mask
        self.interested_mask = up255(resample_image(self.interested_mask, W, H), t=127)

        # compute filling
        if use_fill:
            self.interested_fill = fooocus_fill(self.interested_image, self.interested_mask)

        # soft pixels
        self.mask = morphological_open(mask)
        self.image = image

        # ending
        self.latent = None
        self.latent_after_swap = None
        self.swapped = False
        self.latent_mask = None
        self.inpaint_head_feature = None
        return

    def load_latent(self, latent_fill, latent_mask, latent_swap=None):
        self.latent = latent_fill
        self.latent_mask = latent_mask
        self.latent_after_swap = latent_swap
        return

    def patch(self, inpaint_head_model_path, inpaint_latent, inpaint_latent_mask, model):
        global inpaint_head_model

        if inpaint_head_model is None:
            inpaint_head_model = InpaintHead()
            sd = torch.load(inpaint_head_model_path, map_location='cpu')
            inpaint_head_model.load_state_dict(sd)

        feed = torch.cat([
            inpaint_latent_mask,
            model.model.process_latent_in(inpaint_latent)
        ], dim=1)

        inpaint_head_model.to(device=feed.device, dtype=feed.dtype)
        inpaint_head_feature = inpaint_head_model(feed)

        def input_block_patch(h, transformer_options):
            if transformer_options["block"][1] == 0:
                h = h + inpaint_head_feature.to(h)
            return h

        m = model.clone()
        m.set_model_input_block_patch(input_block_patch)
        return m

    def swap(self):
        if self.swapped:
            return

        if self.latent is None:
            return

        if self.latent_after_swap is None:
            return

        self.latent, self.latent_after_swap = self.latent_after_swap, self.latent
        self.swapped = True
        return

    def unswap(self):
        if not self.swapped:
            return

        if self.latent is None:
            return

        if self.latent_after_swap is None:
            return

        self.latent, self.latent_after_swap = self.latent_after_swap, self.latent
        self.swapped = False
        return

    def color_correction(self, img):
        fg = img.astype(np.float32)
        bg = self.image.copy().astype(np.float32)
        w = self.mask[:, :, None].astype(np.float32) / 255.0
        y = fg * w + bg * (1 - w)
        return y.clip(0, 255).astype(np.uint8)

    def post_process(self, img):
        a, b, c, d = self.interested_area
        content = resample_image(img, d - c, b - a)
        result = self.image.copy()
        result[a:b, c:d] = content
        result = self.color_correction(result)
        return result

    def visualize_mask_processing(self):
        return [self.interested_fill, self.interested_mask, self.interested_image]