Spaces:
Runtime error
Runtime error
File size: 21,782 Bytes
22b112d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
import os
import torch
import time
import math
import ldm_patched.modules.model_base
import ldm_patched.ldm.modules.diffusionmodules.openaimodel
import ldm_patched.modules.model_management
import modules.anisotropic as anisotropic
import ldm_patched.ldm.modules.attention
import ldm_patched.k_diffusion.sampling
import ldm_patched.modules.sd1_clip
import modules.inpaint_worker as inpaint_worker
import ldm_patched.ldm.modules.diffusionmodules.openaimodel
import ldm_patched.ldm.modules.diffusionmodules.model
import ldm_patched.modules.sd
import ldm_patched.controlnet.cldm
import ldm_patched.modules.model_patcher
import ldm_patched.modules.samplers
import ldm_patched.modules.args_parser
import modules.advanced_parameters as advanced_parameters
import warnings
import safetensors.torch
import modules.constants as constants
from ldm_patched.modules.samplers import calc_cond_uncond_batch
from ldm_patched.k_diffusion.sampling import BatchedBrownianTree
from ldm_patched.ldm.modules.diffusionmodules.openaimodel import forward_timestep_embed, apply_control
from modules.patch_precision import patch_all_precision
from modules.patch_clip import patch_all_clip
sharpness = 2.0
adm_scaler_end = 0.3
positive_adm_scale = 1.5
negative_adm_scale = 0.8
adaptive_cfg = 7.0
global_diffusion_progress = 0
eps_record = None
def calculate_weight_patched(self, patches, weight, key):
for p in patches:
alpha = p[0]
v = p[1]
strength_model = p[2]
if strength_model != 1.0:
weight *= strength_model
if isinstance(v, list):
v = (self.calculate_weight(v[1:], v[0].clone(), key),)
if len(v) == 1:
patch_type = "diff"
elif len(v) == 2:
patch_type = v[0]
v = v[1]
if patch_type == "diff":
w1 = v[0]
if alpha != 0.0:
if w1.shape != weight.shape:
print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
else:
weight += alpha * ldm_patched.modules.model_management.cast_to_device(w1, weight.device, weight.dtype)
elif patch_type == "lora":
mat1 = ldm_patched.modules.model_management.cast_to_device(v[0], weight.device, torch.float32)
mat2 = ldm_patched.modules.model_management.cast_to_device(v[1], weight.device, torch.float32)
if v[2] is not None:
alpha *= v[2] / mat2.shape[0]
if v[3] is not None:
mat3 = ldm_patched.modules.model_management.cast_to_device(v[3], weight.device, torch.float32)
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1),
mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
try:
weight += (alpha * torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1))).reshape(
weight.shape).type(weight.dtype)
except Exception as e:
print("ERROR", key, e)
elif patch_type == "fooocus":
w1 = ldm_patched.modules.model_management.cast_to_device(v[0], weight.device, torch.float32)
w_min = ldm_patched.modules.model_management.cast_to_device(v[1], weight.device, torch.float32)
w_max = ldm_patched.modules.model_management.cast_to_device(v[2], weight.device, torch.float32)
w1 = (w1 / 255.0) * (w_max - w_min) + w_min
if alpha != 0.0:
if w1.shape != weight.shape:
print("WARNING SHAPE MISMATCH {} FOOOCUS WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
else:
weight += alpha * ldm_patched.modules.model_management.cast_to_device(w1, weight.device, weight.dtype)
elif patch_type == "lokr":
w1 = v[0]
w2 = v[1]
w1_a = v[3]
w1_b = v[4]
w2_a = v[5]
w2_b = v[6]
t2 = v[7]
dim = None
if w1 is None:
dim = w1_b.shape[0]
w1 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w1_a, weight.device, torch.float32),
ldm_patched.modules.model_management.cast_to_device(w1_b, weight.device, torch.float32))
else:
w1 = ldm_patched.modules.model_management.cast_to_device(w1, weight.device, torch.float32)
if w2 is None:
dim = w2_b.shape[0]
if t2 is None:
w2 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w2_a, weight.device, torch.float32),
ldm_patched.modules.model_management.cast_to_device(w2_b, weight.device, torch.float32))
else:
w2 = torch.einsum('i j k l, j r, i p -> p r k l',
ldm_patched.modules.model_management.cast_to_device(t2, weight.device, torch.float32),
ldm_patched.modules.model_management.cast_to_device(w2_b, weight.device, torch.float32),
ldm_patched.modules.model_management.cast_to_device(w2_a, weight.device, torch.float32))
else:
w2 = ldm_patched.modules.model_management.cast_to_device(w2, weight.device, torch.float32)
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
if v[2] is not None and dim is not None:
alpha *= v[2] / dim
try:
weight += alpha * torch.kron(w1, w2).reshape(weight.shape).type(weight.dtype)
except Exception as e:
print("ERROR", key, e)
elif patch_type == "loha":
w1a = v[0]
w1b = v[1]
if v[2] is not None:
alpha *= v[2] / w1b.shape[0]
w2a = v[3]
w2b = v[4]
if v[5] is not None: # cp decomposition
t1 = v[5]
t2 = v[6]
m1 = torch.einsum('i j k l, j r, i p -> p r k l',
ldm_patched.modules.model_management.cast_to_device(t1, weight.device, torch.float32),
ldm_patched.modules.model_management.cast_to_device(w1b, weight.device, torch.float32),
ldm_patched.modules.model_management.cast_to_device(w1a, weight.device, torch.float32))
m2 = torch.einsum('i j k l, j r, i p -> p r k l',
ldm_patched.modules.model_management.cast_to_device(t2, weight.device, torch.float32),
ldm_patched.modules.model_management.cast_to_device(w2b, weight.device, torch.float32),
ldm_patched.modules.model_management.cast_to_device(w2a, weight.device, torch.float32))
else:
m1 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w1a, weight.device, torch.float32),
ldm_patched.modules.model_management.cast_to_device(w1b, weight.device, torch.float32))
m2 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w2a, weight.device, torch.float32),
ldm_patched.modules.model_management.cast_to_device(w2b, weight.device, torch.float32))
try:
weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype)
except Exception as e:
print("ERROR", key, e)
elif patch_type == "glora":
if v[4] is not None:
alpha *= v[4] / v[0].shape[0]
a1 = ldm_patched.modules.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, torch.float32)
a2 = ldm_patched.modules.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, torch.float32)
b1 = ldm_patched.modules.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, torch.float32)
b2 = ldm_patched.modules.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, torch.float32)
weight += ((torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)) * alpha).reshape(weight.shape).type(weight.dtype)
else:
print("patch type not recognized", patch_type, key)
return weight
class BrownianTreeNoiseSamplerPatched:
transform = None
tree = None
@staticmethod
def global_init(x, sigma_min, sigma_max, seed=None, transform=lambda x: x, cpu=False):
if ldm_patched.modules.model_management.directml_enabled:
cpu = True
t0, t1 = transform(torch.as_tensor(sigma_min)), transform(torch.as_tensor(sigma_max))
BrownianTreeNoiseSamplerPatched.transform = transform
BrownianTreeNoiseSamplerPatched.tree = BatchedBrownianTree(x, t0, t1, seed, cpu=cpu)
def __init__(self, *args, **kwargs):
pass
@staticmethod
def __call__(sigma, sigma_next):
transform = BrownianTreeNoiseSamplerPatched.transform
tree = BrownianTreeNoiseSamplerPatched.tree
t0, t1 = transform(torch.as_tensor(sigma)), transform(torch.as_tensor(sigma_next))
return tree(t0, t1) / (t1 - t0).abs().sqrt()
def compute_cfg(uncond, cond, cfg_scale, t):
global adaptive_cfg
mimic_cfg = float(adaptive_cfg)
real_cfg = float(cfg_scale)
real_eps = uncond + real_cfg * (cond - uncond)
if cfg_scale > adaptive_cfg:
mimicked_eps = uncond + mimic_cfg * (cond - uncond)
return real_eps * t + mimicked_eps * (1 - t)
else:
return real_eps
def patched_sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options=None, seed=None):
global eps_record
if math.isclose(cond_scale, 1.0) and not model_options.get("disable_cfg1_optimization", False):
final_x0 = calc_cond_uncond_batch(model, cond, None, x, timestep, model_options)[0]
if eps_record is not None:
eps_record = ((x - final_x0) / timestep).cpu()
return final_x0
positive_x0, negative_x0 = calc_cond_uncond_batch(model, cond, uncond, x, timestep, model_options)
positive_eps = x - positive_x0
negative_eps = x - negative_x0
alpha = 0.001 * sharpness * global_diffusion_progress
positive_eps_degraded = anisotropic.adaptive_anisotropic_filter(x=positive_eps, g=positive_x0)
positive_eps_degraded_weighted = positive_eps_degraded * alpha + positive_eps * (1.0 - alpha)
final_eps = compute_cfg(uncond=negative_eps, cond=positive_eps_degraded_weighted,
cfg_scale=cond_scale, t=global_diffusion_progress)
if eps_record is not None:
eps_record = (final_eps / timestep).cpu()
return x - final_eps
def round_to_64(x):
h = float(x)
h = h / 64.0
h = round(h)
h = int(h)
h = h * 64
return h
def sdxl_encode_adm_patched(self, **kwargs):
global positive_adm_scale, negative_adm_scale
clip_pooled = ldm_patched.modules.model_base.sdxl_pooled(kwargs, self.noise_augmentor)
width = kwargs.get("width", 1024)
height = kwargs.get("height", 1024)
target_width = width
target_height = height
if kwargs.get("prompt_type", "") == "negative":
width = float(width) * negative_adm_scale
height = float(height) * negative_adm_scale
elif kwargs.get("prompt_type", "") == "positive":
width = float(width) * positive_adm_scale
height = float(height) * positive_adm_scale
def embedder(number_list):
h = self.embedder(torch.tensor(number_list, dtype=torch.float32))
h = torch.flatten(h).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
return h
width, height = int(width), int(height)
target_width, target_height = round_to_64(target_width), round_to_64(target_height)
adm_emphasized = embedder([height, width, 0, 0, target_height, target_width])
adm_consistent = embedder([target_height, target_width, 0, 0, target_height, target_width])
clip_pooled = clip_pooled.to(adm_emphasized)
final_adm = torch.cat((clip_pooled, adm_emphasized, clip_pooled, adm_consistent), dim=1)
return final_adm
def patched_KSamplerX0Inpaint_forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, model_options={}, seed=None):
if inpaint_worker.current_task is not None:
latent_processor = self.inner_model.inner_model.process_latent_in
inpaint_latent = latent_processor(inpaint_worker.current_task.latent).to(x)
inpaint_mask = inpaint_worker.current_task.latent_mask.to(x)
if getattr(self, 'energy_generator', None) is None:
# avoid bad results by using different seeds.
self.energy_generator = torch.Generator(device='cpu').manual_seed((seed + 1) % constants.MAX_SEED)
energy_sigma = sigma.reshape([sigma.shape[0]] + [1] * (len(x.shape) - 1))
current_energy = torch.randn(
x.size(), dtype=x.dtype, generator=self.energy_generator, device="cpu").to(x) * energy_sigma
x = x * inpaint_mask + (inpaint_latent + current_energy) * (1.0 - inpaint_mask)
out = self.inner_model(x, sigma,
cond=cond,
uncond=uncond,
cond_scale=cond_scale,
model_options=model_options,
seed=seed)
out = out * inpaint_mask + inpaint_latent * (1.0 - inpaint_mask)
else:
out = self.inner_model(x, sigma,
cond=cond,
uncond=uncond,
cond_scale=cond_scale,
model_options=model_options,
seed=seed)
return out
def timed_adm(y, timesteps):
if isinstance(y, torch.Tensor) and int(y.dim()) == 2 and int(y.shape[1]) == 5632:
y_mask = (timesteps > 999.0 * (1.0 - float(adm_scaler_end))).to(y)[..., None]
y_with_adm = y[..., :2816].clone()
y_without_adm = y[..., 2816:].clone()
return y_with_adm * y_mask + y_without_adm * (1.0 - y_mask)
return y
def patched_cldm_forward(self, x, hint, timesteps, context, y=None, **kwargs):
t_emb = ldm_patched.ldm.modules.diffusionmodules.openaimodel.timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
emb = self.time_embed(t_emb)
guided_hint = self.input_hint_block(hint, emb, context)
y = timed_adm(y, timesteps)
outs = []
hs = []
if self.num_classes is not None:
assert y.shape[0] == x.shape[0]
emb = emb + self.label_emb(y)
h = x
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
if guided_hint is not None:
h = module(h, emb, context)
h += guided_hint
guided_hint = None
else:
h = module(h, emb, context)
outs.append(zero_conv(h, emb, context))
h = self.middle_block(h, emb, context)
outs.append(self.middle_block_out(h, emb, context))
if advanced_parameters.controlnet_softness > 0:
for i in range(10):
k = 1.0 - float(i) / 9.0
outs[i] = outs[i] * (1.0 - advanced_parameters.controlnet_softness * k)
return outs
def patched_unet_forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs):
global global_diffusion_progress
self.current_step = 1.0 - timesteps.to(x) / 999.0
global_diffusion_progress = float(self.current_step.detach().cpu().numpy().tolist()[0])
y = timed_adm(y, timesteps)
transformer_options["original_shape"] = list(x.shape)
transformer_options["transformer_index"] = 0
transformer_patches = transformer_options.get("patches", {})
num_video_frames = kwargs.get("num_video_frames", self.default_num_video_frames)
image_only_indicator = kwargs.get("image_only_indicator", self.default_image_only_indicator)
time_context = kwargs.get("time_context", None)
assert (y is not None) == (
self.num_classes is not None
), "must specify y if and only if the model is class-conditional"
hs = []
t_emb = ldm_patched.ldm.modules.diffusionmodules.openaimodel.timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
emb = self.time_embed(t_emb)
if self.num_classes is not None:
assert y.shape[0] == x.shape[0]
emb = emb + self.label_emb(y)
h = x
for id, module in enumerate(self.input_blocks):
transformer_options["block"] = ("input", id)
h = forward_timestep_embed(module, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
h = apply_control(h, control, 'input')
if "input_block_patch" in transformer_patches:
patch = transformer_patches["input_block_patch"]
for p in patch:
h = p(h, transformer_options)
hs.append(h)
if "input_block_patch_after_skip" in transformer_patches:
patch = transformer_patches["input_block_patch_after_skip"]
for p in patch:
h = p(h, transformer_options)
transformer_options["block"] = ("middle", 0)
h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
h = apply_control(h, control, 'middle')
for id, module in enumerate(self.output_blocks):
transformer_options["block"] = ("output", id)
hsp = hs.pop()
hsp = apply_control(hsp, control, 'output')
if "output_block_patch" in transformer_patches:
patch = transformer_patches["output_block_patch"]
for p in patch:
h, hsp = p(h, hsp, transformer_options)
h = torch.cat([h, hsp], dim=1)
del hsp
if len(hs) > 0:
output_shape = hs[-1].shape
else:
output_shape = None
h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
h = h.type(x.dtype)
if self.predict_codebook_ids:
return self.id_predictor(h)
else:
return self.out(h)
def patched_load_models_gpu(*args, **kwargs):
execution_start_time = time.perf_counter()
y = ldm_patched.modules.model_management.load_models_gpu_origin(*args, **kwargs)
moving_time = time.perf_counter() - execution_start_time
if moving_time > 0.1:
print(f'[Fooocus Model Management] Moving model(s) has taken {moving_time:.2f} seconds')
return y
def build_loaded(module, loader_name):
original_loader_name = loader_name + '_origin'
if not hasattr(module, original_loader_name):
setattr(module, original_loader_name, getattr(module, loader_name))
original_loader = getattr(module, original_loader_name)
def loader(*args, **kwargs):
result = None
try:
result = original_loader(*args, **kwargs)
except Exception as e:
result = None
exp = str(e) + '\n'
for path in list(args) + list(kwargs.values()):
if isinstance(path, str):
if os.path.exists(path):
exp += f'File corrupted: {path} \n'
corrupted_backup_file = path + '.corrupted'
if os.path.exists(corrupted_backup_file):
os.remove(corrupted_backup_file)
os.replace(path, corrupted_backup_file)
if os.path.exists(path):
os.remove(path)
exp += f'Fooocus has tried to move the corrupted file to {corrupted_backup_file} \n'
exp += f'You may try again now and Fooocus will download models again. \n'
raise ValueError(exp)
return result
setattr(module, loader_name, loader)
return
def patch_all():
if ldm_patched.modules.model_management.directml_enabled:
ldm_patched.modules.model_management.lowvram_available = True
ldm_patched.modules.model_management.OOM_EXCEPTION = Exception
patch_all_precision()
patch_all_clip()
if not hasattr(ldm_patched.modules.model_management, 'load_models_gpu_origin'):
ldm_patched.modules.model_management.load_models_gpu_origin = ldm_patched.modules.model_management.load_models_gpu
ldm_patched.modules.model_management.load_models_gpu = patched_load_models_gpu
ldm_patched.modules.model_patcher.ModelPatcher.calculate_weight = calculate_weight_patched
ldm_patched.controlnet.cldm.ControlNet.forward = patched_cldm_forward
ldm_patched.ldm.modules.diffusionmodules.openaimodel.UNetModel.forward = patched_unet_forward
ldm_patched.modules.model_base.SDXL.encode_adm = sdxl_encode_adm_patched
ldm_patched.modules.samplers.KSamplerX0Inpaint.forward = patched_KSamplerX0Inpaint_forward
ldm_patched.k_diffusion.sampling.BrownianTreeNoiseSampler = BrownianTreeNoiseSamplerPatched
ldm_patched.modules.samplers.sampling_function = patched_sampling_function
warnings.filterwarnings(action='ignore', module='torchsde')
build_loaded(safetensors.torch, 'load_file')
build_loaded(torch, 'load')
return
|