File size: 21,782 Bytes
22b112d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
import os
import torch
import time
import math
import ldm_patched.modules.model_base
import ldm_patched.ldm.modules.diffusionmodules.openaimodel
import ldm_patched.modules.model_management
import modules.anisotropic as anisotropic
import ldm_patched.ldm.modules.attention
import ldm_patched.k_diffusion.sampling
import ldm_patched.modules.sd1_clip
import modules.inpaint_worker as inpaint_worker
import ldm_patched.ldm.modules.diffusionmodules.openaimodel
import ldm_patched.ldm.modules.diffusionmodules.model
import ldm_patched.modules.sd
import ldm_patched.controlnet.cldm
import ldm_patched.modules.model_patcher
import ldm_patched.modules.samplers
import ldm_patched.modules.args_parser
import modules.advanced_parameters as advanced_parameters
import warnings
import safetensors.torch
import modules.constants as constants

from ldm_patched.modules.samplers import calc_cond_uncond_batch
from ldm_patched.k_diffusion.sampling import BatchedBrownianTree
from ldm_patched.ldm.modules.diffusionmodules.openaimodel import forward_timestep_embed, apply_control
from modules.patch_precision import patch_all_precision
from modules.patch_clip import patch_all_clip


sharpness = 2.0

adm_scaler_end = 0.3
positive_adm_scale = 1.5
negative_adm_scale = 0.8

adaptive_cfg = 7.0
global_diffusion_progress = 0
eps_record = None


def calculate_weight_patched(self, patches, weight, key):
    for p in patches:
        alpha = p[0]
        v = p[1]
        strength_model = p[2]

        if strength_model != 1.0:
            weight *= strength_model

        if isinstance(v, list):
            v = (self.calculate_weight(v[1:], v[0].clone(), key),)

        if len(v) == 1:
            patch_type = "diff"
        elif len(v) == 2:
            patch_type = v[0]
            v = v[1]

        if patch_type == "diff":
            w1 = v[0]
            if alpha != 0.0:
                if w1.shape != weight.shape:
                    print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
                else:
                    weight += alpha * ldm_patched.modules.model_management.cast_to_device(w1, weight.device, weight.dtype)
        elif patch_type == "lora":
            mat1 = ldm_patched.modules.model_management.cast_to_device(v[0], weight.device, torch.float32)
            mat2 = ldm_patched.modules.model_management.cast_to_device(v[1], weight.device, torch.float32)
            if v[2] is not None:
                alpha *= v[2] / mat2.shape[0]
            if v[3] is not None:
                mat3 = ldm_patched.modules.model_management.cast_to_device(v[3], weight.device, torch.float32)
                final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
                mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1),
                                mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
            try:
                weight += (alpha * torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1))).reshape(
                    weight.shape).type(weight.dtype)
            except Exception as e:
                print("ERROR", key, e)
        elif patch_type == "fooocus":
            w1 = ldm_patched.modules.model_management.cast_to_device(v[0], weight.device, torch.float32)
            w_min = ldm_patched.modules.model_management.cast_to_device(v[1], weight.device, torch.float32)
            w_max = ldm_patched.modules.model_management.cast_to_device(v[2], weight.device, torch.float32)
            w1 = (w1 / 255.0) * (w_max - w_min) + w_min
            if alpha != 0.0:
                if w1.shape != weight.shape:
                    print("WARNING SHAPE MISMATCH {} FOOOCUS WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
                else:
                    weight += alpha * ldm_patched.modules.model_management.cast_to_device(w1, weight.device, weight.dtype)
        elif patch_type == "lokr":
            w1 = v[0]
            w2 = v[1]
            w1_a = v[3]
            w1_b = v[4]
            w2_a = v[5]
            w2_b = v[6]
            t2 = v[7]
            dim = None

            if w1 is None:
                dim = w1_b.shape[0]
                w1 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w1_a, weight.device, torch.float32),
                              ldm_patched.modules.model_management.cast_to_device(w1_b, weight.device, torch.float32))
            else:
                w1 = ldm_patched.modules.model_management.cast_to_device(w1, weight.device, torch.float32)

            if w2 is None:
                dim = w2_b.shape[0]
                if t2 is None:
                    w2 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w2_a, weight.device, torch.float32),
                                  ldm_patched.modules.model_management.cast_to_device(w2_b, weight.device, torch.float32))
                else:
                    w2 = torch.einsum('i j k l, j r, i p -> p r k l',
                                      ldm_patched.modules.model_management.cast_to_device(t2, weight.device, torch.float32),
                                      ldm_patched.modules.model_management.cast_to_device(w2_b, weight.device, torch.float32),
                                      ldm_patched.modules.model_management.cast_to_device(w2_a, weight.device, torch.float32))
            else:
                w2 = ldm_patched.modules.model_management.cast_to_device(w2, weight.device, torch.float32)

            if len(w2.shape) == 4:
                w1 = w1.unsqueeze(2).unsqueeze(2)
            if v[2] is not None and dim is not None:
                alpha *= v[2] / dim

            try:
                weight += alpha * torch.kron(w1, w2).reshape(weight.shape).type(weight.dtype)
            except Exception as e:
                print("ERROR", key, e)
        elif patch_type == "loha":
            w1a = v[0]
            w1b = v[1]
            if v[2] is not None:
                alpha *= v[2] / w1b.shape[0]
            w2a = v[3]
            w2b = v[4]
            if v[5] is not None:  # cp decomposition
                t1 = v[5]
                t2 = v[6]
                m1 = torch.einsum('i j k l, j r, i p -> p r k l',
                                  ldm_patched.modules.model_management.cast_to_device(t1, weight.device, torch.float32),
                                  ldm_patched.modules.model_management.cast_to_device(w1b, weight.device, torch.float32),
                                  ldm_patched.modules.model_management.cast_to_device(w1a, weight.device, torch.float32))

                m2 = torch.einsum('i j k l, j r, i p -> p r k l',
                                  ldm_patched.modules.model_management.cast_to_device(t2, weight.device, torch.float32),
                                  ldm_patched.modules.model_management.cast_to_device(w2b, weight.device, torch.float32),
                                  ldm_patched.modules.model_management.cast_to_device(w2a, weight.device, torch.float32))
            else:
                m1 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w1a, weight.device, torch.float32),
                              ldm_patched.modules.model_management.cast_to_device(w1b, weight.device, torch.float32))
                m2 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w2a, weight.device, torch.float32),
                              ldm_patched.modules.model_management.cast_to_device(w2b, weight.device, torch.float32))

            try:
                weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype)
            except Exception as e:
                print("ERROR", key, e)
        elif patch_type == "glora":
            if v[4] is not None:
                alpha *= v[4] / v[0].shape[0]

            a1 = ldm_patched.modules.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, torch.float32)
            a2 = ldm_patched.modules.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, torch.float32)
            b1 = ldm_patched.modules.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, torch.float32)
            b2 = ldm_patched.modules.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, torch.float32)

            weight += ((torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)) * alpha).reshape(weight.shape).type(weight.dtype)
        else:
            print("patch type not recognized", patch_type, key)

    return weight


class BrownianTreeNoiseSamplerPatched:
    transform = None
    tree = None

    @staticmethod
    def global_init(x, sigma_min, sigma_max, seed=None, transform=lambda x: x, cpu=False):
        if ldm_patched.modules.model_management.directml_enabled:
            cpu = True

        t0, t1 = transform(torch.as_tensor(sigma_min)), transform(torch.as_tensor(sigma_max))

        BrownianTreeNoiseSamplerPatched.transform = transform
        BrownianTreeNoiseSamplerPatched.tree = BatchedBrownianTree(x, t0, t1, seed, cpu=cpu)

    def __init__(self, *args, **kwargs):
        pass

    @staticmethod
    def __call__(sigma, sigma_next):
        transform = BrownianTreeNoiseSamplerPatched.transform
        tree = BrownianTreeNoiseSamplerPatched.tree

        t0, t1 = transform(torch.as_tensor(sigma)), transform(torch.as_tensor(sigma_next))
        return tree(t0, t1) / (t1 - t0).abs().sqrt()


def compute_cfg(uncond, cond, cfg_scale, t):
    global adaptive_cfg

    mimic_cfg = float(adaptive_cfg)
    real_cfg = float(cfg_scale)

    real_eps = uncond + real_cfg * (cond - uncond)

    if cfg_scale > adaptive_cfg:
        mimicked_eps = uncond + mimic_cfg * (cond - uncond)
        return real_eps * t + mimicked_eps * (1 - t)
    else:
        return real_eps


def patched_sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options=None, seed=None):
    global eps_record

    if math.isclose(cond_scale, 1.0) and not model_options.get("disable_cfg1_optimization", False):
        final_x0 = calc_cond_uncond_batch(model, cond, None, x, timestep, model_options)[0]

        if eps_record is not None:
            eps_record = ((x - final_x0) / timestep).cpu()

        return final_x0

    positive_x0, negative_x0 = calc_cond_uncond_batch(model, cond, uncond, x, timestep, model_options)

    positive_eps = x - positive_x0
    negative_eps = x - negative_x0

    alpha = 0.001 * sharpness * global_diffusion_progress

    positive_eps_degraded = anisotropic.adaptive_anisotropic_filter(x=positive_eps, g=positive_x0)
    positive_eps_degraded_weighted = positive_eps_degraded * alpha + positive_eps * (1.0 - alpha)

    final_eps = compute_cfg(uncond=negative_eps, cond=positive_eps_degraded_weighted,
                            cfg_scale=cond_scale, t=global_diffusion_progress)

    if eps_record is not None:
        eps_record = (final_eps / timestep).cpu()

    return x - final_eps


def round_to_64(x):
    h = float(x)
    h = h / 64.0
    h = round(h)
    h = int(h)
    h = h * 64
    return h


def sdxl_encode_adm_patched(self, **kwargs):
    global positive_adm_scale, negative_adm_scale

    clip_pooled = ldm_patched.modules.model_base.sdxl_pooled(kwargs, self.noise_augmentor)
    width = kwargs.get("width", 1024)
    height = kwargs.get("height", 1024)
    target_width = width
    target_height = height

    if kwargs.get("prompt_type", "") == "negative":
        width = float(width) * negative_adm_scale
        height = float(height) * negative_adm_scale
    elif kwargs.get("prompt_type", "") == "positive":
        width = float(width) * positive_adm_scale
        height = float(height) * positive_adm_scale

    def embedder(number_list):
        h = self.embedder(torch.tensor(number_list, dtype=torch.float32))
        h = torch.flatten(h).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
        return h

    width, height = int(width), int(height)
    target_width, target_height = round_to_64(target_width), round_to_64(target_height)

    adm_emphasized = embedder([height, width, 0, 0, target_height, target_width])
    adm_consistent = embedder([target_height, target_width, 0, 0, target_height, target_width])

    clip_pooled = clip_pooled.to(adm_emphasized)
    final_adm = torch.cat((clip_pooled, adm_emphasized, clip_pooled, adm_consistent), dim=1)

    return final_adm


def patched_KSamplerX0Inpaint_forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, model_options={}, seed=None):
    if inpaint_worker.current_task is not None:
        latent_processor = self.inner_model.inner_model.process_latent_in
        inpaint_latent = latent_processor(inpaint_worker.current_task.latent).to(x)
        inpaint_mask = inpaint_worker.current_task.latent_mask.to(x)

        if getattr(self, 'energy_generator', None) is None:
            # avoid bad results by using different seeds.
            self.energy_generator = torch.Generator(device='cpu').manual_seed((seed + 1) % constants.MAX_SEED)

        energy_sigma = sigma.reshape([sigma.shape[0]] + [1] * (len(x.shape) - 1))
        current_energy = torch.randn(
            x.size(), dtype=x.dtype, generator=self.energy_generator, device="cpu").to(x) * energy_sigma
        x = x * inpaint_mask + (inpaint_latent + current_energy) * (1.0 - inpaint_mask)

        out = self.inner_model(x, sigma,
                               cond=cond,
                               uncond=uncond,
                               cond_scale=cond_scale,
                               model_options=model_options,
                               seed=seed)

        out = out * inpaint_mask + inpaint_latent * (1.0 - inpaint_mask)
    else:
        out = self.inner_model(x, sigma,
                               cond=cond,
                               uncond=uncond,
                               cond_scale=cond_scale,
                               model_options=model_options,
                               seed=seed)
    return out


def timed_adm(y, timesteps):
    if isinstance(y, torch.Tensor) and int(y.dim()) == 2 and int(y.shape[1]) == 5632:
        y_mask = (timesteps > 999.0 * (1.0 - float(adm_scaler_end))).to(y)[..., None]
        y_with_adm = y[..., :2816].clone()
        y_without_adm = y[..., 2816:].clone()
        return y_with_adm * y_mask + y_without_adm * (1.0 - y_mask)
    return y


def patched_cldm_forward(self, x, hint, timesteps, context, y=None, **kwargs):
    t_emb = ldm_patched.ldm.modules.diffusionmodules.openaimodel.timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
    emb = self.time_embed(t_emb)

    guided_hint = self.input_hint_block(hint, emb, context)

    y = timed_adm(y, timesteps)

    outs = []

    hs = []
    if self.num_classes is not None:
        assert y.shape[0] == x.shape[0]
        emb = emb + self.label_emb(y)

    h = x
    for module, zero_conv in zip(self.input_blocks, self.zero_convs):
        if guided_hint is not None:
            h = module(h, emb, context)
            h += guided_hint
            guided_hint = None
        else:
            h = module(h, emb, context)
        outs.append(zero_conv(h, emb, context))

    h = self.middle_block(h, emb, context)
    outs.append(self.middle_block_out(h, emb, context))

    if advanced_parameters.controlnet_softness > 0:
        for i in range(10):
            k = 1.0 - float(i) / 9.0
            outs[i] = outs[i] * (1.0 - advanced_parameters.controlnet_softness * k)

    return outs


def patched_unet_forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs):
    global global_diffusion_progress

    self.current_step = 1.0 - timesteps.to(x) / 999.0
    global_diffusion_progress = float(self.current_step.detach().cpu().numpy().tolist()[0])

    y = timed_adm(y, timesteps)

    transformer_options["original_shape"] = list(x.shape)
    transformer_options["transformer_index"] = 0
    transformer_patches = transformer_options.get("patches", {})

    num_video_frames = kwargs.get("num_video_frames", self.default_num_video_frames)
    image_only_indicator = kwargs.get("image_only_indicator", self.default_image_only_indicator)
    time_context = kwargs.get("time_context", None)

    assert (y is not None) == (
            self.num_classes is not None
    ), "must specify y if and only if the model is class-conditional"
    hs = []
    t_emb = ldm_patched.ldm.modules.diffusionmodules.openaimodel.timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
    emb = self.time_embed(t_emb)

    if self.num_classes is not None:
        assert y.shape[0] == x.shape[0]
        emb = emb + self.label_emb(y)

    h = x
    for id, module in enumerate(self.input_blocks):
        transformer_options["block"] = ("input", id)
        h = forward_timestep_embed(module, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
        h = apply_control(h, control, 'input')
        if "input_block_patch" in transformer_patches:
            patch = transformer_patches["input_block_patch"]
            for p in patch:
                h = p(h, transformer_options)

        hs.append(h)
        if "input_block_patch_after_skip" in transformer_patches:
            patch = transformer_patches["input_block_patch_after_skip"]
            for p in patch:
                h = p(h, transformer_options)

    transformer_options["block"] = ("middle", 0)
    h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
    h = apply_control(h, control, 'middle')

    for id, module in enumerate(self.output_blocks):
        transformer_options["block"] = ("output", id)
        hsp = hs.pop()
        hsp = apply_control(hsp, control, 'output')

        if "output_block_patch" in transformer_patches:
            patch = transformer_patches["output_block_patch"]
            for p in patch:
                h, hsp = p(h, hsp, transformer_options)

        h = torch.cat([h, hsp], dim=1)
        del hsp
        if len(hs) > 0:
            output_shape = hs[-1].shape
        else:
            output_shape = None
        h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
    h = h.type(x.dtype)
    if self.predict_codebook_ids:
        return self.id_predictor(h)
    else:
        return self.out(h)


def patched_load_models_gpu(*args, **kwargs):
    execution_start_time = time.perf_counter()
    y = ldm_patched.modules.model_management.load_models_gpu_origin(*args, **kwargs)
    moving_time = time.perf_counter() - execution_start_time
    if moving_time > 0.1:
        print(f'[Fooocus Model Management] Moving model(s) has taken {moving_time:.2f} seconds')
    return y


def build_loaded(module, loader_name):
    original_loader_name = loader_name + '_origin'

    if not hasattr(module, original_loader_name):
        setattr(module, original_loader_name, getattr(module, loader_name))

    original_loader = getattr(module, original_loader_name)

    def loader(*args, **kwargs):
        result = None
        try:
            result = original_loader(*args, **kwargs)
        except Exception as e:
            result = None
            exp = str(e) + '\n'
            for path in list(args) + list(kwargs.values()):
                if isinstance(path, str):
                    if os.path.exists(path):
                        exp += f'File corrupted: {path} \n'
                        corrupted_backup_file = path + '.corrupted'
                        if os.path.exists(corrupted_backup_file):
                            os.remove(corrupted_backup_file)
                        os.replace(path, corrupted_backup_file)
                        if os.path.exists(path):
                            os.remove(path)
                        exp += f'Fooocus has tried to move the corrupted file to {corrupted_backup_file} \n'
                        exp += f'You may try again now and Fooocus will download models again. \n'
            raise ValueError(exp)
        return result

    setattr(module, loader_name, loader)
    return


def patch_all():
    if ldm_patched.modules.model_management.directml_enabled:
        ldm_patched.modules.model_management.lowvram_available = True
        ldm_patched.modules.model_management.OOM_EXCEPTION = Exception
    
    patch_all_precision()
    patch_all_clip()

    if not hasattr(ldm_patched.modules.model_management, 'load_models_gpu_origin'):
        ldm_patched.modules.model_management.load_models_gpu_origin = ldm_patched.modules.model_management.load_models_gpu

    ldm_patched.modules.model_management.load_models_gpu = patched_load_models_gpu
    ldm_patched.modules.model_patcher.ModelPatcher.calculate_weight = calculate_weight_patched
    ldm_patched.controlnet.cldm.ControlNet.forward = patched_cldm_forward
    ldm_patched.ldm.modules.diffusionmodules.openaimodel.UNetModel.forward = patched_unet_forward
    ldm_patched.modules.model_base.SDXL.encode_adm = sdxl_encode_adm_patched
    ldm_patched.modules.samplers.KSamplerX0Inpaint.forward = patched_KSamplerX0Inpaint_forward
    ldm_patched.k_diffusion.sampling.BrownianTreeNoiseSampler = BrownianTreeNoiseSamplerPatched
    ldm_patched.modules.samplers.sampling_function = patched_sampling_function

    warnings.filterwarnings(action='ignore', module='torchsde')

    build_loaded(safetensors.torch, 'load_file')
    build_loaded(torch, 'load')

    return