Spaces:
Runtime error
Runtime error
from modules.patch import patch_all | |
patch_all() | |
import os | |
import einops | |
import torch | |
import numpy as np | |
import ldm_patched.modules.model_management | |
import ldm_patched.modules.model_detection | |
import ldm_patched.modules.model_patcher | |
import ldm_patched.modules.utils | |
import ldm_patched.modules.controlnet | |
import modules.sample_hijack | |
import ldm_patched.modules.samplers | |
import ldm_patched.modules.latent_formats | |
import modules.advanced_parameters | |
from ldm_patched.modules.sd import load_checkpoint_guess_config | |
from ldm_patched.contrib.external import VAEDecode, EmptyLatentImage, VAEEncode, VAEEncodeTiled, VAEDecodeTiled, \ | |
ControlNetApplyAdvanced | |
from ldm_patched.contrib.external_freelunch import FreeU_V2 | |
from ldm_patched.modules.sample import prepare_mask | |
from modules.lora import match_lora | |
from ldm_patched.modules.lora import model_lora_keys_unet, model_lora_keys_clip | |
from modules.config import path_embeddings | |
from ldm_patched.contrib.external_model_advanced import ModelSamplingDiscrete | |
opEmptyLatentImage = EmptyLatentImage() | |
opVAEDecode = VAEDecode() | |
opVAEEncode = VAEEncode() | |
opVAEDecodeTiled = VAEDecodeTiled() | |
opVAEEncodeTiled = VAEEncodeTiled() | |
opControlNetApplyAdvanced = ControlNetApplyAdvanced() | |
opFreeU = FreeU_V2() | |
opModelSamplingDiscrete = ModelSamplingDiscrete() | |
class StableDiffusionModel: | |
def __init__(self, unet=None, vae=None, clip=None, clip_vision=None, filename=None): | |
self.unet = unet | |
self.vae = vae | |
self.clip = clip | |
self.clip_vision = clip_vision | |
self.filename = filename | |
self.unet_with_lora = unet | |
self.clip_with_lora = clip | |
self.visited_loras = '' | |
self.lora_key_map_unet = {} | |
self.lora_key_map_clip = {} | |
if self.unet is not None: | |
self.lora_key_map_unet = model_lora_keys_unet(self.unet.model, self.lora_key_map_unet) | |
self.lora_key_map_unet.update({x: x for x in self.unet.model.state_dict().keys()}) | |
if self.clip is not None: | |
self.lora_key_map_clip = model_lora_keys_clip(self.clip.cond_stage_model, self.lora_key_map_clip) | |
self.lora_key_map_clip.update({x: x for x in self.clip.cond_stage_model.state_dict().keys()}) | |
def refresh_loras(self, loras): | |
assert isinstance(loras, list) | |
if self.visited_loras == str(loras): | |
return | |
self.visited_loras = str(loras) | |
if self.unet is None: | |
return | |
print(f'Request to load LoRAs {str(loras)} for model [{self.filename}].') | |
loras_to_load = [] | |
for name, weight in loras: | |
if name == 'None': | |
continue | |
if os.path.exists(name): | |
lora_filename = name | |
else: | |
lora_filename = os.path.join(modules.config.path_loras, name) | |
if not os.path.exists(lora_filename): | |
print(f'Lora file not found: {lora_filename}') | |
continue | |
loras_to_load.append((lora_filename, weight)) | |
self.unet_with_lora = self.unet.clone() if self.unet is not None else None | |
self.clip_with_lora = self.clip.clone() if self.clip is not None else None | |
for lora_filename, weight in loras_to_load: | |
lora_unmatch = ldm_patched.modules.utils.load_torch_file(lora_filename, safe_load=False) | |
lora_unet, lora_unmatch = match_lora(lora_unmatch, self.lora_key_map_unet) | |
lora_clip, lora_unmatch = match_lora(lora_unmatch, self.lora_key_map_clip) | |
if len(lora_unmatch) > 12: | |
# model mismatch | |
continue | |
if len(lora_unmatch) > 0: | |
print(f'Loaded LoRA [{lora_filename}] for model [{self.filename}] ' | |
f'with unmatched keys {list(lora_unmatch.keys())}') | |
if self.unet_with_lora is not None and len(lora_unet) > 0: | |
loaded_keys = self.unet_with_lora.add_patches(lora_unet, weight) | |
print(f'Loaded LoRA [{lora_filename}] for UNet [{self.filename}] ' | |
f'with {len(loaded_keys)} keys at weight {weight}.') | |
for item in lora_unet: | |
if item not in loaded_keys: | |
print("UNet LoRA key skipped: ", item) | |
if self.clip_with_lora is not None and len(lora_clip) > 0: | |
loaded_keys = self.clip_with_lora.add_patches(lora_clip, weight) | |
print(f'Loaded LoRA [{lora_filename}] for CLIP [{self.filename}] ' | |
f'with {len(loaded_keys)} keys at weight {weight}.') | |
for item in lora_clip: | |
if item not in loaded_keys: | |
print("CLIP LoRA key skipped: ", item) | |
def apply_freeu(model, b1, b2, s1, s2): | |
return opFreeU.patch(model=model, b1=b1, b2=b2, s1=s1, s2=s2)[0] | |
def load_controlnet(ckpt_filename): | |
return ldm_patched.modules.controlnet.load_controlnet(ckpt_filename) | |
def apply_controlnet(positive, negative, control_net, image, strength, start_percent, end_percent): | |
return opControlNetApplyAdvanced.apply_controlnet(positive=positive, negative=negative, control_net=control_net, | |
image=image, strength=strength, start_percent=start_percent, end_percent=end_percent) | |
def load_model(ckpt_filename): | |
unet, clip, vae, clip_vision = load_checkpoint_guess_config(ckpt_filename, embedding_directory=path_embeddings) | |
return StableDiffusionModel(unet=unet, clip=clip, vae=vae, clip_vision=clip_vision, filename=ckpt_filename) | |
def generate_empty_latent(width=1024, height=1024, batch_size=1): | |
return opEmptyLatentImage.generate(width=width, height=height, batch_size=batch_size)[0] | |
def decode_vae(vae, latent_image, tiled=False): | |
if tiled: | |
return opVAEDecodeTiled.decode(samples=latent_image, vae=vae, tile_size=512)[0] | |
else: | |
return opVAEDecode.decode(samples=latent_image, vae=vae)[0] | |
def encode_vae(vae, pixels, tiled=False): | |
if tiled: | |
return opVAEEncodeTiled.encode(pixels=pixels, vae=vae, tile_size=512)[0] | |
else: | |
return opVAEEncode.encode(pixels=pixels, vae=vae)[0] | |
def encode_vae_inpaint(vae, pixels, mask): | |
assert mask.ndim == 3 and pixels.ndim == 4 | |
assert mask.shape[-1] == pixels.shape[-2] | |
assert mask.shape[-2] == pixels.shape[-3] | |
w = mask.round()[..., None] | |
pixels = pixels * (1 - w) + 0.5 * w | |
latent = vae.encode(pixels) | |
B, C, H, W = latent.shape | |
latent_mask = mask[:, None, :, :] | |
latent_mask = torch.nn.functional.interpolate(latent_mask, size=(H * 8, W * 8), mode="bilinear").round() | |
latent_mask = torch.nn.functional.max_pool2d(latent_mask, (8, 8)).round().to(latent) | |
return latent, latent_mask | |
class VAEApprox(torch.nn.Module): | |
def __init__(self): | |
super(VAEApprox, self).__init__() | |
self.conv1 = torch.nn.Conv2d(4, 8, (7, 7)) | |
self.conv2 = torch.nn.Conv2d(8, 16, (5, 5)) | |
self.conv3 = torch.nn.Conv2d(16, 32, (3, 3)) | |
self.conv4 = torch.nn.Conv2d(32, 64, (3, 3)) | |
self.conv5 = torch.nn.Conv2d(64, 32, (3, 3)) | |
self.conv6 = torch.nn.Conv2d(32, 16, (3, 3)) | |
self.conv7 = torch.nn.Conv2d(16, 8, (3, 3)) | |
self.conv8 = torch.nn.Conv2d(8, 3, (3, 3)) | |
self.current_type = None | |
def forward(self, x): | |
extra = 11 | |
x = torch.nn.functional.interpolate(x, (x.shape[2] * 2, x.shape[3] * 2)) | |
x = torch.nn.functional.pad(x, (extra, extra, extra, extra)) | |
for layer in [self.conv1, self.conv2, self.conv3, self.conv4, self.conv5, self.conv6, self.conv7, self.conv8]: | |
x = layer(x) | |
x = torch.nn.functional.leaky_relu(x, 0.1) | |
return x | |
VAE_approx_models = {} | |
def get_previewer(model): | |
global VAE_approx_models | |
from modules.config import path_vae_approx | |
is_sdxl = isinstance(model.model.latent_format, ldm_patched.modules.latent_formats.SDXL) | |
vae_approx_filename = os.path.join(path_vae_approx, 'xlvaeapp.pth' if is_sdxl else 'vaeapp_sd15.pth') | |
if vae_approx_filename in VAE_approx_models: | |
VAE_approx_model = VAE_approx_models[vae_approx_filename] | |
else: | |
sd = torch.load(vae_approx_filename, map_location='cpu') | |
VAE_approx_model = VAEApprox() | |
VAE_approx_model.load_state_dict(sd) | |
del sd | |
VAE_approx_model.eval() | |
if ldm_patched.modules.model_management.should_use_fp16(): | |
VAE_approx_model.half() | |
VAE_approx_model.current_type = torch.float16 | |
else: | |
VAE_approx_model.float() | |
VAE_approx_model.current_type = torch.float32 | |
VAE_approx_model.to(ldm_patched.modules.model_management.get_torch_device()) | |
VAE_approx_models[vae_approx_filename] = VAE_approx_model | |
def preview_function(x0, step, total_steps): | |
with torch.no_grad(): | |
x_sample = x0.to(VAE_approx_model.current_type) | |
x_sample = VAE_approx_model(x_sample) * 127.5 + 127.5 | |
x_sample = einops.rearrange(x_sample, 'b c h w -> b h w c')[0] | |
x_sample = x_sample.cpu().numpy().clip(0, 255).astype(np.uint8) | |
return x_sample | |
return preview_function | |
def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=7.0, sampler_name='dpmpp_2m_sde_gpu', | |
scheduler='karras', denoise=1.0, disable_noise=False, start_step=None, last_step=None, | |
force_full_denoise=False, callback_function=None, refiner=None, refiner_switch=-1, | |
previewer_start=None, previewer_end=None, sigmas=None, noise_mean=None): | |
if sigmas is not None: | |
sigmas = sigmas.clone().to(ldm_patched.modules.model_management.get_torch_device()) | |
latent_image = latent["samples"] | |
if disable_noise: | |
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu") | |
else: | |
batch_inds = latent["batch_index"] if "batch_index" in latent else None | |
noise = ldm_patched.modules.sample.prepare_noise(latent_image, seed, batch_inds) | |
if isinstance(noise_mean, torch.Tensor): | |
noise = noise + noise_mean - torch.mean(noise, dim=1, keepdim=True) | |
noise_mask = None | |
if "noise_mask" in latent: | |
noise_mask = latent["noise_mask"] | |
previewer = get_previewer(model) | |
if previewer_start is None: | |
previewer_start = 0 | |
if previewer_end is None: | |
previewer_end = steps | |
def callback(step, x0, x, total_steps): | |
ldm_patched.modules.model_management.throw_exception_if_processing_interrupted() | |
y = None | |
if previewer is not None and not modules.advanced_parameters.disable_preview: | |
y = previewer(x0, previewer_start + step, previewer_end) | |
if callback_function is not None: | |
callback_function(previewer_start + step, x0, x, previewer_end, y) | |
disable_pbar = False | |
modules.sample_hijack.current_refiner = refiner | |
modules.sample_hijack.refiner_switch_step = refiner_switch | |
ldm_patched.modules.samplers.sample = modules.sample_hijack.sample_hacked | |
try: | |
samples = ldm_patched.modules.sample.sample(model, | |
noise, steps, cfg, sampler_name, scheduler, | |
positive, negative, latent_image, | |
denoise=denoise, disable_noise=disable_noise, | |
start_step=start_step, | |
last_step=last_step, | |
force_full_denoise=force_full_denoise, noise_mask=noise_mask, | |
callback=callback, | |
disable_pbar=disable_pbar, seed=seed, sigmas=sigmas) | |
out = latent.copy() | |
out["samples"] = samples | |
finally: | |
modules.sample_hijack.current_refiner = None | |
return out | |
def pytorch_to_numpy(x): | |
return [np.clip(255. * y.cpu().numpy(), 0, 255).astype(np.uint8) for y in x] | |
def numpy_to_pytorch(x): | |
y = x.astype(np.float32) / 255.0 | |
y = y[None] | |
y = np.ascontiguousarray(y.copy()) | |
y = torch.from_numpy(y).float() | |
return y | |