# Fooocus GPT2 Expansion # Algorithm created by Lvmin Zhang at 2023, Stanford # If used inside Fooocus, any use is permitted. # If used outside Fooocus, only non-commercial use is permitted (CC-By NC 4.0). # This applies to the word list, vocab, model, and algorithm. import os import torch import math import ldm_patched.modules.model_management as model_management from transformers.generation.logits_process import LogitsProcessorList from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed from modules.config import path_fooocus_expansion from ldm_patched.modules.model_patcher import ModelPatcher # limitation of np.random.seed(), called from transformers.set_seed() SEED_LIMIT_NUMPY = 2**32 neg_inf = - 8192.0 def safe_str(x): x = str(x) for _ in range(16): x = x.replace(' ', ' ') return x.strip(",. \r\n") def remove_pattern(x, pattern): for p in pattern: x = x.replace(p, '') return x class FooocusExpansion: def __init__(self): self.tokenizer = AutoTokenizer.from_pretrained(path_fooocus_expansion) positive_words = open(os.path.join(path_fooocus_expansion, 'positive.txt'), encoding='utf-8').read().splitlines() positive_words = ['Ġ' + x.lower() for x in positive_words if x != ''] self.logits_bias = torch.zeros((1, len(self.tokenizer.vocab)), dtype=torch.float32) + neg_inf debug_list = [] for k, v in self.tokenizer.vocab.items(): if k in positive_words: self.logits_bias[0, v] = 0 debug_list.append(k[1:]) print(f'Fooocus V2 Expansion: Vocab with {len(debug_list)} words.') # debug_list = '\n'.join(sorted(debug_list)) # print(debug_list) # t11 = self.tokenizer(',', return_tensors="np") # t198 = self.tokenizer('\n', return_tensors="np") # eos = self.tokenizer.eos_token_id self.model = AutoModelForCausalLM.from_pretrained(path_fooocus_expansion) self.model.eval() load_device = model_management.text_encoder_device() offload_device = model_management.text_encoder_offload_device() # MPS hack if model_management.is_device_mps(load_device): load_device = torch.device('cpu') offload_device = torch.device('cpu') use_fp16 = model_management.should_use_fp16(device=load_device) if use_fp16: self.model.half() self.patcher = ModelPatcher(self.model, load_device=load_device, offload_device=offload_device) print(f'Fooocus Expansion engine loaded for {load_device}, use_fp16 = {use_fp16}.') @torch.no_grad() @torch.inference_mode() def logits_processor(self, input_ids, scores): assert scores.ndim == 2 and scores.shape[0] == 1 self.logits_bias = self.logits_bias.to(scores) bias = self.logits_bias.clone() bias[0, input_ids[0].to(bias.device).long()] = neg_inf bias[0, 11] = 0 return scores + bias @torch.no_grad() @torch.inference_mode() def __call__(self, prompt, seed): if prompt == '': return '' if self.patcher.current_device != self.patcher.load_device: print('Fooocus Expansion loaded by itself.') model_management.load_model_gpu(self.patcher) seed = int(seed) % SEED_LIMIT_NUMPY set_seed(seed) prompt = safe_str(prompt) + ',' tokenized_kwargs = self.tokenizer(prompt, return_tensors="pt") tokenized_kwargs.data['input_ids'] = tokenized_kwargs.data['input_ids'].to(self.patcher.load_device) tokenized_kwargs.data['attention_mask'] = tokenized_kwargs.data['attention_mask'].to(self.patcher.load_device) current_token_length = int(tokenized_kwargs.data['input_ids'].shape[1]) max_token_length = 75 * int(math.ceil(float(current_token_length) / 75.0)) max_new_tokens = max_token_length - current_token_length # https://huggingface.co/blog/introducing-csearch # https://huggingface.co/docs/transformers/generation_strategies features = self.model.generate(**tokenized_kwargs, top_k=100, max_new_tokens=max_new_tokens, do_sample=True, logits_processor=LogitsProcessorList([self.logits_processor])) response = self.tokenizer.batch_decode(features, skip_special_tokens=True) result = safe_str(response[0]) return result