Update main.py
Browse files
main.py
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel
|
3 |
-
from
|
4 |
|
5 |
# Model loading
|
6 |
llm = AutoModelForCausalLM.from_pretrained("sqlcoder-7b.Q4_K_S.gguf")
|
|
|
7 |
|
8 |
# Pydantic object for request validation
|
9 |
class Validation(BaseModel):
|
@@ -15,6 +16,13 @@ app = FastAPI()
|
|
15 |
# Endpoint for SQL query generation
|
16 |
@app.post("/generate_sql")
|
17 |
async def generate_sql(item: Validation):
|
18 |
-
#
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
|
5 |
# Model loading
|
6 |
llm = AutoModelForCausalLM.from_pretrained("sqlcoder-7b.Q4_K_S.gguf")
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("sqlcoder-7b.Q4_K_S.gguf")
|
8 |
|
9 |
# Pydantic object for request validation
|
10 |
class Validation(BaseModel):
|
|
|
16 |
# Endpoint for SQL query generation
|
17 |
@app.post("/generate_sql")
|
18 |
async def generate_sql(item: Validation):
|
19 |
+
# Tokenize the input prompt
|
20 |
+
input_ids = tokenizer.encode(item.prompt, return_tensors="pt")
|
21 |
+
|
22 |
+
# Use the tokenized prompt for model completion
|
23 |
+
completion = llm.generate(input_ids)
|
24 |
+
|
25 |
+
# Decode the generated SQL query
|
26 |
+
generated_sql = tokenizer.decode(completion[0], skip_special_tokens=True)
|
27 |
+
|
28 |
+
return {"generated_sql": generated_sql}
|