from fastapi import FastAPI from pydantic import BaseModel from ctransformers import AutoModelForCausalLM, AutoTokenizer # Model loading llm = AutoModelForCausalLM.from_pretrained("sqlcoder-7b.Q4_K_S.gguf") tokenizer = AutoTokenizer.from_pretrained("sqlcoder-7b.Q4_K_S.gguf") # Pydantic object for request validation class Validation(BaseModel): prompt: str # Initialize FastAPI app app = FastAPI() # Endpoint for SQL query generation @app.post("/generate_sql") async def generate_sql(item: Validation): # Tokenize the input prompt input_ids = tokenizer.encode(item.prompt, return_tensors="pt") # Use the tokenized prompt for model completion completion = llm.generate(input_ids) # Decode the generated SQL query generated_sql = tokenizer.decode(completion[0], skip_special_tokens=True) return {"generated_sql": generated_sql}