Spaces:
Running
Running
File size: 5,045 Bytes
168444f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import os
import gradio as gr
from gradio_imageslider import ImageSlider
from loadimg import load_img
import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
from PIL import Image, ImageChops
from moviepy.editor import VideoFileClip, ImageSequenceClip
import numpy as np
from tqdm import tqdm
from uuid import uuid1
# Check CUDA availability
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
torch.set_float32_matmul_precision(["high", "highest"][0])
# Load the model
birefnet = AutoModelForImageSegmentation.from_pretrained(
"briaai/RMBG-2.0", trust_remote_code=True
)
birefnet.to(device)
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
output_folder = 'output_images'
if not os.path.exists(output_folder):
os.makedirs(output_folder)
def fn(image):
im = load_img(image, output_type="pil")
im = im.convert("RGB")
origin = im.copy()
image = process(im)
image_path = os.path.join(output_folder, "no_bg_image.png")
image.save(image_path)
return (image, origin), image_path
@spaces.GPU
def process(image):
image_size = image.size
input_images = transform_image(image).unsqueeze(0).to(device)
# Prediction
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
image.putalpha(mask)
return image
def process_file(f):
name_path = f.rsplit(".",1)[0]+".png"
im = load_img(f, output_type="pil")
im = im.convert("RGB")
transparent = process(im)
transparent.save(name_path)
return name_path
def remove_background(image):
"""Remove background from a single image."""
input_images = transform_image(image).unsqueeze(0).to(device)
# Prediction
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
# Convert the prediction to a mask
mask = (pred * 255).byte() # Convert to 0-255 range
mask_pil = transforms.ToPILImage()(mask).convert("L")
mask_resized = mask_pil.resize(image.size, Image.LANCZOS)
# Apply the mask to the image
image.putalpha(mask_resized)
return image, mask_resized
def process_video(input_video_path):
"""Process a video to remove the background from each frame."""
# Load the video
video_clip = VideoFileClip(input_video_path)
# Process each frame
frames = []
for frame in tqdm(video_clip.iter_frames()):
frame_pil = Image.fromarray(frame)
frame_no_bg, mask_resized = remove_background(frame_pil)
path = "{}.png".format(uuid1())
frame_no_bg.save(path)
frame_no_bg = Image.open(path).convert("RGBA")
os.remove(path)
# Convert mask_resized to RGBA mode
mask_resized_rgba = mask_resized.convert("RGBA")
# Apply the mask using ImageChops.multiply
output = ImageChops.multiply(frame_no_bg, mask_resized_rgba)
output_np = np.array(output)
frames.append(output_np)
# Save the processed frames as a new video
output_video_path = os.path.join(output_folder, "no_bg_video.mp4")
processed_clip = ImageSequenceClip(frames, fps=video_clip.fps)
processed_clip.write_videofile(output_video_path, codec='libx264', ffmpeg_params=['-pix_fmt', 'yuva420p'])
return output_video_path
# Gradio components
slider1 = ImageSlider(label="RMBG-2.0", type="pil")
slider2 = ImageSlider(label="RMBG-2.0", type="pil")
image = gr.Image(label="Upload an image")
image2 = gr.Image(label="Upload an image", type="filepath")
text = gr.Textbox(label="Paste an image URL")
png_file = gr.File(label="output png file")
video_input = gr.Video(label="Upload a video")
video_output = gr.Video(label="Processed video")
# Example videos
example_videos = [
"pexels-cottonbro-5319934.mp4",
"300_A_car_is_running_on_the_road.mp4",
"A_Terracotta_Warrior_is_skateboarding_9033688.mp4"
]
# Gradio interfaces
tab1 = gr.Interface(
fn, inputs=image, outputs=[slider1, gr.File(label="output png file")], examples=[load_img("giraffe.jpg", output_type="pil")], api_name="image"
)
tab2 = gr.Interface(fn, inputs=text, outputs=[slider2, gr.File(label="output png file")], examples=["http://farm9.staticflickr.com/8488/8228323072_76eeddfea3_z.jpg"], api_name="text")
#tab3 = gr.Interface(process_file, inputs=image2, outputs=png_file, examples=["giraffe.jpg"], api_name="png")
tab4 = gr.Interface(process_video, inputs=video_input, outputs=video_output, examples=example_videos, api_name="video", cache_examples = False)
# Gradio tabbed interface
demo = gr.TabbedInterface(
[tab4, tab1, tab2], ["input video", "input image", "input url"], title="RMBG-2.0 for background removal"
)
if __name__ == "__main__":
demo.launch(share=True, show_error=True)
|