svjack commited on
Commit
144a1c4
·
verified ·
1 Parent(s): 168444f

Upload remove_bg_script.py

Browse files
Files changed (1) hide show
  1. remove_bg_script.py +114 -0
remove_bg_script.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ pip install torch accelerate opencv-python pillow numpy timm kornia prettytable typing scikit-image transformers>=4.39.1 gradio==4.44.1 gradio_imageslider loadimg>=0.1.1 "httpx[socks]" moviepy==1.0.3
3
+
4
+ huggingface-cli download \
5
+ --repo-type dataset svjack/video-dataset-Lily-Bikini-organized \
6
+ --local-dir video-dataset-Lily-Bikini-organized
7
+
8
+ python remove_bg_script.py video-dataset-Lily-Bikini-organized video-dataset-Lily-Bikini-rm-background-organized --copy_others
9
+ '''
10
+
11
+ from PIL import Image, ImageChops
12
+ import torch
13
+ from torchvision import transforms
14
+ from transformers import AutoModelForImageSegmentation
15
+ from moviepy.editor import VideoFileClip, ImageSequenceClip
16
+ import numpy as np
17
+ from tqdm import tqdm
18
+ from uuid import uuid1
19
+ import os
20
+ import shutil
21
+ import argparse
22
+
23
+ # Load the model
24
+ model = AutoModelForImageSegmentation.from_pretrained('briaai/RMBG-2.0', trust_remote_code=True)
25
+ torch.set_float32_matmul_precision('high') # Set precision
26
+ model.to('cuda')
27
+ model.eval()
28
+
29
+ # Data settings
30
+ image_size = (1024, 1024)
31
+ transform_image = transforms.Compose([
32
+ transforms.Resize(image_size),
33
+ transforms.ToTensor(),
34
+ transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
35
+ ])
36
+
37
+ def remove_background(image):
38
+ """Remove background from a single image."""
39
+ input_images = transform_image(image).unsqueeze(0).to('cuda')
40
+
41
+ # Prediction
42
+ with torch.no_grad():
43
+ preds = model(input_images)[-1].sigmoid().cpu()
44
+ pred = preds[0].squeeze()
45
+
46
+ # Convert the prediction to a mask
47
+ mask = (pred * 255).byte() # Convert to 0-255 range
48
+ mask_pil = transforms.ToPILImage()(mask).convert("L")
49
+ mask_resized = mask_pil.resize(image.size, Image.LANCZOS)
50
+
51
+ # Apply the mask to the image
52
+ image.putalpha(mask_resized)
53
+
54
+ return image, mask_resized
55
+
56
+ def process_video(input_video_path, output_video_path):
57
+ """Process a video to remove the background from each frame."""
58
+ # Load the video
59
+ video_clip = VideoFileClip(input_video_path)
60
+
61
+ # Process each frame
62
+ frames = []
63
+ for frame in tqdm(video_clip.iter_frames()):
64
+ frame_pil = Image.fromarray(frame)
65
+ frame_no_bg, mask_resized = remove_background(frame_pil)
66
+ path = "{}.png".format(uuid1())
67
+ frame_no_bg.save(path)
68
+ frame_no_bg = Image.open(path).convert("RGBA")
69
+ os.remove(path)
70
+
71
+ # Convert mask_resized to RGBA mode
72
+ mask_resized_rgba = mask_resized.convert("RGBA")
73
+
74
+ # Apply the mask using ImageChops.multiply
75
+ output = ImageChops.multiply(frame_no_bg, mask_resized_rgba)
76
+ output_np = np.array(output)
77
+ frames.append(output_np)
78
+
79
+ # Save the processed frames as a new video
80
+ processed_clip = ImageSequenceClip(frames, fps=video_clip.fps)
81
+ processed_clip.write_videofile(output_video_path, codec='libx264', ffmpeg_params=['-pix_fmt', 'yuva420p'])
82
+
83
+ def copy_non_video_files(input_path, output_path):
84
+ """Copy non-video files and directories from input path to output path."""
85
+ for item in os.listdir(input_path):
86
+ item_path = os.path.join(input_path, item)
87
+ if not item.lower().endswith(('.mp4', '.avi', '.mov', '.mkv')):
88
+ dest_path = os.path.join(output_path, item)
89
+ if os.path.isdir(item_path):
90
+ shutil.copytree(item_path, dest_path)
91
+ else:
92
+ shutil.copy2(item_path, dest_path)
93
+
94
+ def main(input_path, output_path, copy_others=False):
95
+ if not os.path.exists(output_path):
96
+ os.makedirs(output_path)
97
+
98
+ if copy_others:
99
+ copy_non_video_files(input_path, output_path)
100
+
101
+ for video_name in os.listdir(input_path):
102
+ if video_name.lower().endswith(('.mp4', '.avi', '.mov', '.mkv')):
103
+ input_video_path = os.path.join(input_path, video_name)
104
+ output_video_path = os.path.join(output_path, video_name)
105
+ process_video(input_video_path, output_video_path)
106
+
107
+ if __name__ == "__main__":
108
+ parser = argparse.ArgumentParser(description="Process videos to remove background.")
109
+ parser.add_argument("input_path", type=str, help="Path to the input directory containing videos.")
110
+ parser.add_argument("output_path", type=str, help="Path to the output directory for processed videos.")
111
+ parser.add_argument("--copy_others", action="store_true", help="Copy non-video files and directories from input to output.")
112
+
113
+ args = parser.parse_args()
114
+ main(args.input_path, args.output_path, args.copy_others)