import gradio as gr
import pandas as pd
import requests
import os
import numpy as np
import re
from tqdm import tqdm
from time import sleep
from PIL import Image
import requests
from io import BytesIO
from datasets import Dataset, load_dataset
import json
import cv2
import pathlib
import imagehash
API_TOKEN = os.environ.get("HF_READ_TOKEN")
MAX_MODEL_NUM = 300
'''
Yntec digplay
'''
hf_civitai_image_info_dataset = load_dataset("svjack/hf_civitai_image_info_v0", token = API_TOKEN)
hf_civitai_image_info_df = hf_civitai_image_info_dataset["train"].to_pandas()
def gen_interface(model_name, max_times = 3):
times = 0
gr_model_interface = None
while gr_model_interface is None and times < max_times:
try:
gr_model_interface = gr.load("models/{}".format(model_name),live=True,preprocess = False)
except:
print("error {} times {}".format(model_name, times))
sleep(2)
times += 1
return gr_model_interface
#gr_model_interface.title
def toImgOpenCV(imgPIL): # Conver imgPIL to imgOpenCV
i = np.array(imgPIL) # After mapping from PIL to numpy : [R,G,B,A]
# numpy Image Channel system: [B,G,R,A]
red = i[:,:,0].copy(); i[:,:,0] = i[:,:,2].copy(); i[:,:,2] = red;
return i;
def toImgPIL(imgOpenCV): return Image.fromarray(cv2.cvtColor(imgOpenCV, cv2.COLOR_BGR2RGB));
def jpg_val_to_img(jpg_bytes):
img_buf = np.frombuffer(jpg_bytes, np.uint8)
img = cv2.imdecode(img_buf, cv2.IMREAD_UNCHANGED)
return toImgPIL(img)
model_list = hf_civitai_image_info_df["hf_repo_id"].drop_duplicates().values.tolist()
model_interface_list = []
for model_name in tqdm(model_list):
gr_model_interface = gen_interface(model_name)
if gr_model_interface is not None:
model_interface_list.append(gr_model_interface)
if len(model_interface_list) >= MAX_MODEL_NUM:
break
print("load model num : {}".format(len(model_interface_list)))
def get_civitai_iframe(url, width = 1400, height = 768, as_html = True, visible = False):
html= '''
'''.format(url, width, height)
if as_html:
html = gr.HTML(html, visible = visible)
return html
def get_info_by_interface(gr_interface, model_interface_list = model_interface_list):
#### out: (gr_interface, civitai_url, civitai_info)
if hasattr(gr_interface, "app"):
civitai_url = hf_civitai_image_info_df[
hf_civitai_image_info_df["hf_repo_id"] == gr_interface.title
]["civital_url"].iloc[0]
civitai_info = hf_civitai_image_info_df[
hf_civitai_image_info_df["hf_repo_id"] == gr_interface.title
][["prompt", "image"]].values.tolist()
return gr_interface ,civitai_url, civitai_info
else:
civitai_url = hf_civitai_image_info_df[
hf_civitai_image_info_df["hf_repo_id"] == gr_interface
]["civital_url"].iloc[0]
civitai_info = hf_civitai_image_info_df[
hf_civitai_image_info_df["hf_repo_id"] == gr_interface
][["prompt", "image"]].values.tolist()
return list(filter(lambda x:x.title == gr_interface, model_interface_list))[0] ,civitai_url, civitai_info
def read_image_from_url(url):
response = requests.get(url)
img = Image.open(BytesIO(response.content))
return img
def image_click(images, evt: gr.SelectData, gr_interface_value,
):
img_selected = images[evt.index]
#print(img_selected)
im_data = img_selected["name"]
im = Image.open(im_data)
im_hash = imagehash.average_hash(
im, hash_size = 1024
)
min_diff = int(1e10)
#print(-1)
repo_card_im_dict = dict(
get_info_by_interface(gr_interface_value)[2]
)
min_repo_name = ""
for idx ,(repo_name, repo_card_image) in enumerate(repo_card_im_dict.items()):
repo_img = jpg_val_to_img(repo_card_image["bytes"])
repo_img_hash = imagehash.average_hash(
repo_img, hash_size = 1024
)
diff = im_hash - repo_img_hash
if diff < min_diff:
min_diff = diff
min_repo_name = repo_name
#print(idx)
prompt = min_repo_name
return prompt
#return prompt, im
def try_repo_act_func(civitai_url, show_civitai_button):
repo_html_iframe_hide = get_civitai_iframe(civitai_url, visible = True if show_civitai_button == "Show Civitai Page" else False)
return repo_html_iframe_hide, gr.Button("Hide Civitai Page" if show_civitai_button == "Show Civitai Page" else "Show Civitai Page")
with gr.Blocks(
css = '''
.header img {
float: middle;
width: 33px;
height: 33px;
}
.header h1 {
top: 18px;
left: 10px;
}
'''
) as demo:
gr.HTML(
'''