File size: 12,093 Bytes
77771e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import os
import sys

import torch

from diffusers import (
    AutoPipelineForImage2Image,
    AutoPipelineForInpainting,
    AutoPipelineForText2Image,
    ControlNetModel,
    LCMScheduler,
    StableDiffusionAdapterPipeline,
    StableDiffusionControlNetPipeline,
    StableDiffusionXLAdapterPipeline,
    StableDiffusionXLControlNetPipeline,
    T2IAdapter,
    WuerstchenCombinedPipeline,
)
from diffusers.utils import load_image


sys.path.append(".")

from utils import (  # noqa: E402
    BASE_PATH,
    PROMPT,
    BenchmarkInfo,
    benchmark_fn,
    bytes_to_giga_bytes,
    flush,
    generate_csv_dict,
    write_to_csv,
)


RESOLUTION_MAPPING = {
    "Lykon/DreamShaper": (512, 512),
    "lllyasviel/sd-controlnet-canny": (512, 512),
    "diffusers/controlnet-canny-sdxl-1.0": (1024, 1024),
    "TencentARC/t2iadapter_canny_sd14v1": (512, 512),
    "TencentARC/t2i-adapter-canny-sdxl-1.0": (1024, 1024),
    "stabilityai/stable-diffusion-2-1": (768, 768),
    "stabilityai/stable-diffusion-xl-base-1.0": (1024, 1024),
    "stabilityai/stable-diffusion-xl-refiner-1.0": (1024, 1024),
    "stabilityai/sdxl-turbo": (512, 512),
}


class BaseBenchmak:
    pipeline_class = None

    def __init__(self, args):
        super().__init__()

    def run_inference(self, args):
        raise NotImplementedError

    def benchmark(self, args):
        raise NotImplementedError

    def get_result_filepath(self, args):
        pipeline_class_name = str(self.pipe.__class__.__name__)
        name = (
            args.ckpt.replace("/", "_")
            + "_"
            + pipeline_class_name
            + f"-bs@{args.batch_size}-steps@{args.num_inference_steps}-mco@{args.model_cpu_offload}-compile@{args.run_compile}.csv"
        )
        filepath = os.path.join(BASE_PATH, name)
        return filepath


class TextToImageBenchmark(BaseBenchmak):
    pipeline_class = AutoPipelineForText2Image

    def __init__(self, args):
        pipe = self.pipeline_class.from_pretrained(args.ckpt, torch_dtype=torch.float16)
        pipe = pipe.to("cuda")

        if args.run_compile:
            if not isinstance(pipe, WuerstchenCombinedPipeline):
                pipe.unet.to(memory_format=torch.channels_last)
                print("Run torch compile")
                pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)

                if hasattr(pipe, "movq") and getattr(pipe, "movq", None) is not None:
                    pipe.movq.to(memory_format=torch.channels_last)
                    pipe.movq = torch.compile(pipe.movq, mode="reduce-overhead", fullgraph=True)
            else:
                print("Run torch compile")
                pipe.decoder = torch.compile(pipe.decoder, mode="reduce-overhead", fullgraph=True)
                pipe.vqgan = torch.compile(pipe.vqgan, mode="reduce-overhead", fullgraph=True)

        pipe.set_progress_bar_config(disable=True)
        self.pipe = pipe

    def run_inference(self, pipe, args):
        _ = pipe(
            prompt=PROMPT,
            num_inference_steps=args.num_inference_steps,
            num_images_per_prompt=args.batch_size,
        )

    def benchmark(self, args):
        flush()

        print(f"[INFO] {self.pipe.__class__.__name__}: Running benchmark with: {vars(args)}\n")

        time = benchmark_fn(self.run_inference, self.pipe, args)  # in seconds.
        memory = bytes_to_giga_bytes(torch.cuda.max_memory_allocated())  # in GBs.
        benchmark_info = BenchmarkInfo(time=time, memory=memory)

        pipeline_class_name = str(self.pipe.__class__.__name__)
        flush()
        csv_dict = generate_csv_dict(
            pipeline_cls=pipeline_class_name, ckpt=args.ckpt, args=args, benchmark_info=benchmark_info
        )
        filepath = self.get_result_filepath(args)
        write_to_csv(filepath, csv_dict)
        print(f"Logs written to: {filepath}")
        flush()


class TurboTextToImageBenchmark(TextToImageBenchmark):
    def __init__(self, args):
        super().__init__(args)

    def run_inference(self, pipe, args):
        _ = pipe(
            prompt=PROMPT,
            num_inference_steps=args.num_inference_steps,
            num_images_per_prompt=args.batch_size,
            guidance_scale=0.0,
        )


class LCMLoRATextToImageBenchmark(TextToImageBenchmark):
    lora_id = "latent-consistency/lcm-lora-sdxl"

    def __init__(self, args):
        super().__init__(args)
        self.pipe.load_lora_weights(self.lora_id)
        self.pipe.fuse_lora()
        self.pipe.unload_lora_weights()
        self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)

    def get_result_filepath(self, args):
        pipeline_class_name = str(self.pipe.__class__.__name__)
        name = (
            self.lora_id.replace("/", "_")
            + "_"
            + pipeline_class_name
            + f"-bs@{args.batch_size}-steps@{args.num_inference_steps}-mco@{args.model_cpu_offload}-compile@{args.run_compile}.csv"
        )
        filepath = os.path.join(BASE_PATH, name)
        return filepath

    def run_inference(self, pipe, args):
        _ = pipe(
            prompt=PROMPT,
            num_inference_steps=args.num_inference_steps,
            num_images_per_prompt=args.batch_size,
            guidance_scale=1.0,
        )

    def benchmark(self, args):
        flush()

        print(f"[INFO] {self.pipe.__class__.__name__}: Running benchmark with: {vars(args)}\n")

        time = benchmark_fn(self.run_inference, self.pipe, args)  # in seconds.
        memory = bytes_to_giga_bytes(torch.cuda.max_memory_allocated())  # in GBs.
        benchmark_info = BenchmarkInfo(time=time, memory=memory)

        pipeline_class_name = str(self.pipe.__class__.__name__)
        flush()
        csv_dict = generate_csv_dict(
            pipeline_cls=pipeline_class_name, ckpt=self.lora_id, args=args, benchmark_info=benchmark_info
        )
        filepath = self.get_result_filepath(args)
        write_to_csv(filepath, csv_dict)
        print(f"Logs written to: {filepath}")
        flush()


class ImageToImageBenchmark(TextToImageBenchmark):
    pipeline_class = AutoPipelineForImage2Image
    url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/1665_Girl_with_a_Pearl_Earring.jpg"
    image = load_image(url).convert("RGB")

    def __init__(self, args):
        super().__init__(args)
        self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt])

    def run_inference(self, pipe, args):
        _ = pipe(
            prompt=PROMPT,
            image=self.image,
            num_inference_steps=args.num_inference_steps,
            num_images_per_prompt=args.batch_size,
        )


class TurboImageToImageBenchmark(ImageToImageBenchmark):
    def __init__(self, args):
        super().__init__(args)

    def run_inference(self, pipe, args):
        _ = pipe(
            prompt=PROMPT,
            image=self.image,
            num_inference_steps=args.num_inference_steps,
            num_images_per_prompt=args.batch_size,
            guidance_scale=0.0,
            strength=0.5,
        )


class InpaintingBenchmark(ImageToImageBenchmark):
    pipeline_class = AutoPipelineForInpainting
    mask_url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/overture-creations-5sI6fQgYIuo_mask.png"
    mask = load_image(mask_url).convert("RGB")

    def __init__(self, args):
        super().__init__(args)
        self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt])
        self.mask = self.mask.resize(RESOLUTION_MAPPING[args.ckpt])

    def run_inference(self, pipe, args):
        _ = pipe(
            prompt=PROMPT,
            image=self.image,
            mask_image=self.mask,
            num_inference_steps=args.num_inference_steps,
            num_images_per_prompt=args.batch_size,
        )


class IPAdapterTextToImageBenchmark(TextToImageBenchmark):
    url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/load_neg_embed.png"
    image = load_image(url)

    def __init__(self, args):
        pipe = self.pipeline_class.from_pretrained(args.ckpt, torch_dtype=torch.float16).to("cuda")
        pipe.load_ip_adapter(
            args.ip_adapter_id[0],
            subfolder="models" if "sdxl" not in args.ip_adapter_id[1] else "sdxl_models",
            weight_name=args.ip_adapter_id[1],
        )

        if args.run_compile:
            pipe.unet.to(memory_format=torch.channels_last)
            print("Run torch compile")
            pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)

        pipe.set_progress_bar_config(disable=True)
        self.pipe = pipe

    def run_inference(self, pipe, args):
        _ = pipe(
            prompt=PROMPT,
            ip_adapter_image=self.image,
            num_inference_steps=args.num_inference_steps,
            num_images_per_prompt=args.batch_size,
        )


class ControlNetBenchmark(TextToImageBenchmark):
    pipeline_class = StableDiffusionControlNetPipeline
    aux_network_class = ControlNetModel
    root_ckpt = "Lykon/DreamShaper"

    url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_image_condition.png"
    image = load_image(url).convert("RGB")

    def __init__(self, args):
        aux_network = self.aux_network_class.from_pretrained(args.ckpt, torch_dtype=torch.float16)
        pipe = self.pipeline_class.from_pretrained(self.root_ckpt, controlnet=aux_network, torch_dtype=torch.float16)
        pipe = pipe.to("cuda")

        pipe.set_progress_bar_config(disable=True)
        self.pipe = pipe

        if args.run_compile:
            pipe.unet.to(memory_format=torch.channels_last)
            pipe.controlnet.to(memory_format=torch.channels_last)

            print("Run torch compile")
            pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
            pipe.controlnet = torch.compile(pipe.controlnet, mode="reduce-overhead", fullgraph=True)

        self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt])

    def run_inference(self, pipe, args):
        _ = pipe(
            prompt=PROMPT,
            image=self.image,
            num_inference_steps=args.num_inference_steps,
            num_images_per_prompt=args.batch_size,
        )


class ControlNetSDXLBenchmark(ControlNetBenchmark):
    pipeline_class = StableDiffusionXLControlNetPipeline
    root_ckpt = "stabilityai/stable-diffusion-xl-base-1.0"

    def __init__(self, args):
        super().__init__(args)


class T2IAdapterBenchmark(ControlNetBenchmark):
    pipeline_class = StableDiffusionAdapterPipeline
    aux_network_class = T2IAdapter
    root_ckpt = "Lykon/DreamShaper"

    url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_for_adapter.png"
    image = load_image(url).convert("L")

    def __init__(self, args):
        aux_network = self.aux_network_class.from_pretrained(args.ckpt, torch_dtype=torch.float16)
        pipe = self.pipeline_class.from_pretrained(self.root_ckpt, adapter=aux_network, torch_dtype=torch.float16)
        pipe = pipe.to("cuda")

        pipe.set_progress_bar_config(disable=True)
        self.pipe = pipe

        if args.run_compile:
            pipe.unet.to(memory_format=torch.channels_last)
            pipe.adapter.to(memory_format=torch.channels_last)

            print("Run torch compile")
            pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
            pipe.adapter = torch.compile(pipe.adapter, mode="reduce-overhead", fullgraph=True)

        self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt])


class T2IAdapterSDXLBenchmark(T2IAdapterBenchmark):
    pipeline_class = StableDiffusionXLAdapterPipeline
    root_ckpt = "stabilityai/stable-diffusion-xl-base-1.0"

    url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_for_adapter_sdxl.png"
    image = load_image(url)

    def __init__(self, args):
        super().__init__(args)