import os import sys import torch from diffusers import ( AutoPipelineForImage2Image, AutoPipelineForInpainting, AutoPipelineForText2Image, ControlNetModel, LCMScheduler, StableDiffusionAdapterPipeline, StableDiffusionControlNetPipeline, StableDiffusionXLAdapterPipeline, StableDiffusionXLControlNetPipeline, T2IAdapter, WuerstchenCombinedPipeline, ) from diffusers.utils import load_image sys.path.append(".") from utils import ( # noqa: E402 BASE_PATH, PROMPT, BenchmarkInfo, benchmark_fn, bytes_to_giga_bytes, flush, generate_csv_dict, write_to_csv, ) RESOLUTION_MAPPING = { "Lykon/DreamShaper": (512, 512), "lllyasviel/sd-controlnet-canny": (512, 512), "diffusers/controlnet-canny-sdxl-1.0": (1024, 1024), "TencentARC/t2iadapter_canny_sd14v1": (512, 512), "TencentARC/t2i-adapter-canny-sdxl-1.0": (1024, 1024), "stabilityai/stable-diffusion-2-1": (768, 768), "stabilityai/stable-diffusion-xl-base-1.0": (1024, 1024), "stabilityai/stable-diffusion-xl-refiner-1.0": (1024, 1024), "stabilityai/sdxl-turbo": (512, 512), } class BaseBenchmak: pipeline_class = None def __init__(self, args): super().__init__() def run_inference(self, args): raise NotImplementedError def benchmark(self, args): raise NotImplementedError def get_result_filepath(self, args): pipeline_class_name = str(self.pipe.__class__.__name__) name = ( args.ckpt.replace("/", "_") + "_" + pipeline_class_name + f"-bs@{args.batch_size}-steps@{args.num_inference_steps}-mco@{args.model_cpu_offload}-compile@{args.run_compile}.csv" ) filepath = os.path.join(BASE_PATH, name) return filepath class TextToImageBenchmark(BaseBenchmak): pipeline_class = AutoPipelineForText2Image def __init__(self, args): pipe = self.pipeline_class.from_pretrained(args.ckpt, torch_dtype=torch.float16) pipe = pipe.to("cuda") if args.run_compile: if not isinstance(pipe, WuerstchenCombinedPipeline): pipe.unet.to(memory_format=torch.channels_last) print("Run torch compile") pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) if hasattr(pipe, "movq") and getattr(pipe, "movq", None) is not None: pipe.movq.to(memory_format=torch.channels_last) pipe.movq = torch.compile(pipe.movq, mode="reduce-overhead", fullgraph=True) else: print("Run torch compile") pipe.decoder = torch.compile(pipe.decoder, mode="reduce-overhead", fullgraph=True) pipe.vqgan = torch.compile(pipe.vqgan, mode="reduce-overhead", fullgraph=True) pipe.set_progress_bar_config(disable=True) self.pipe = pipe def run_inference(self, pipe, args): _ = pipe( prompt=PROMPT, num_inference_steps=args.num_inference_steps, num_images_per_prompt=args.batch_size, ) def benchmark(self, args): flush() print(f"[INFO] {self.pipe.__class__.__name__}: Running benchmark with: {vars(args)}\n") time = benchmark_fn(self.run_inference, self.pipe, args) # in seconds. memory = bytes_to_giga_bytes(torch.cuda.max_memory_allocated()) # in GBs. benchmark_info = BenchmarkInfo(time=time, memory=memory) pipeline_class_name = str(self.pipe.__class__.__name__) flush() csv_dict = generate_csv_dict( pipeline_cls=pipeline_class_name, ckpt=args.ckpt, args=args, benchmark_info=benchmark_info ) filepath = self.get_result_filepath(args) write_to_csv(filepath, csv_dict) print(f"Logs written to: {filepath}") flush() class TurboTextToImageBenchmark(TextToImageBenchmark): def __init__(self, args): super().__init__(args) def run_inference(self, pipe, args): _ = pipe( prompt=PROMPT, num_inference_steps=args.num_inference_steps, num_images_per_prompt=args.batch_size, guidance_scale=0.0, ) class LCMLoRATextToImageBenchmark(TextToImageBenchmark): lora_id = "latent-consistency/lcm-lora-sdxl" def __init__(self, args): super().__init__(args) self.pipe.load_lora_weights(self.lora_id) self.pipe.fuse_lora() self.pipe.unload_lora_weights() self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config) def get_result_filepath(self, args): pipeline_class_name = str(self.pipe.__class__.__name__) name = ( self.lora_id.replace("/", "_") + "_" + pipeline_class_name + f"-bs@{args.batch_size}-steps@{args.num_inference_steps}-mco@{args.model_cpu_offload}-compile@{args.run_compile}.csv" ) filepath = os.path.join(BASE_PATH, name) return filepath def run_inference(self, pipe, args): _ = pipe( prompt=PROMPT, num_inference_steps=args.num_inference_steps, num_images_per_prompt=args.batch_size, guidance_scale=1.0, ) def benchmark(self, args): flush() print(f"[INFO] {self.pipe.__class__.__name__}: Running benchmark with: {vars(args)}\n") time = benchmark_fn(self.run_inference, self.pipe, args) # in seconds. memory = bytes_to_giga_bytes(torch.cuda.max_memory_allocated()) # in GBs. benchmark_info = BenchmarkInfo(time=time, memory=memory) pipeline_class_name = str(self.pipe.__class__.__name__) flush() csv_dict = generate_csv_dict( pipeline_cls=pipeline_class_name, ckpt=self.lora_id, args=args, benchmark_info=benchmark_info ) filepath = self.get_result_filepath(args) write_to_csv(filepath, csv_dict) print(f"Logs written to: {filepath}") flush() class ImageToImageBenchmark(TextToImageBenchmark): pipeline_class = AutoPipelineForImage2Image url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/1665_Girl_with_a_Pearl_Earring.jpg" image = load_image(url).convert("RGB") def __init__(self, args): super().__init__(args) self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt]) def run_inference(self, pipe, args): _ = pipe( prompt=PROMPT, image=self.image, num_inference_steps=args.num_inference_steps, num_images_per_prompt=args.batch_size, ) class TurboImageToImageBenchmark(ImageToImageBenchmark): def __init__(self, args): super().__init__(args) def run_inference(self, pipe, args): _ = pipe( prompt=PROMPT, image=self.image, num_inference_steps=args.num_inference_steps, num_images_per_prompt=args.batch_size, guidance_scale=0.0, strength=0.5, ) class InpaintingBenchmark(ImageToImageBenchmark): pipeline_class = AutoPipelineForInpainting mask_url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/overture-creations-5sI6fQgYIuo_mask.png" mask = load_image(mask_url).convert("RGB") def __init__(self, args): super().__init__(args) self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt]) self.mask = self.mask.resize(RESOLUTION_MAPPING[args.ckpt]) def run_inference(self, pipe, args): _ = pipe( prompt=PROMPT, image=self.image, mask_image=self.mask, num_inference_steps=args.num_inference_steps, num_images_per_prompt=args.batch_size, ) class IPAdapterTextToImageBenchmark(TextToImageBenchmark): url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/load_neg_embed.png" image = load_image(url) def __init__(self, args): pipe = self.pipeline_class.from_pretrained(args.ckpt, torch_dtype=torch.float16).to("cuda") pipe.load_ip_adapter( args.ip_adapter_id[0], subfolder="models" if "sdxl" not in args.ip_adapter_id[1] else "sdxl_models", weight_name=args.ip_adapter_id[1], ) if args.run_compile: pipe.unet.to(memory_format=torch.channels_last) print("Run torch compile") pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) pipe.set_progress_bar_config(disable=True) self.pipe = pipe def run_inference(self, pipe, args): _ = pipe( prompt=PROMPT, ip_adapter_image=self.image, num_inference_steps=args.num_inference_steps, num_images_per_prompt=args.batch_size, ) class ControlNetBenchmark(TextToImageBenchmark): pipeline_class = StableDiffusionControlNetPipeline aux_network_class = ControlNetModel root_ckpt = "Lykon/DreamShaper" url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_image_condition.png" image = load_image(url).convert("RGB") def __init__(self, args): aux_network = self.aux_network_class.from_pretrained(args.ckpt, torch_dtype=torch.float16) pipe = self.pipeline_class.from_pretrained(self.root_ckpt, controlnet=aux_network, torch_dtype=torch.float16) pipe = pipe.to("cuda") pipe.set_progress_bar_config(disable=True) self.pipe = pipe if args.run_compile: pipe.unet.to(memory_format=torch.channels_last) pipe.controlnet.to(memory_format=torch.channels_last) print("Run torch compile") pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) pipe.controlnet = torch.compile(pipe.controlnet, mode="reduce-overhead", fullgraph=True) self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt]) def run_inference(self, pipe, args): _ = pipe( prompt=PROMPT, image=self.image, num_inference_steps=args.num_inference_steps, num_images_per_prompt=args.batch_size, ) class ControlNetSDXLBenchmark(ControlNetBenchmark): pipeline_class = StableDiffusionXLControlNetPipeline root_ckpt = "stabilityai/stable-diffusion-xl-base-1.0" def __init__(self, args): super().__init__(args) class T2IAdapterBenchmark(ControlNetBenchmark): pipeline_class = StableDiffusionAdapterPipeline aux_network_class = T2IAdapter root_ckpt = "Lykon/DreamShaper" url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_for_adapter.png" image = load_image(url).convert("L") def __init__(self, args): aux_network = self.aux_network_class.from_pretrained(args.ckpt, torch_dtype=torch.float16) pipe = self.pipeline_class.from_pretrained(self.root_ckpt, adapter=aux_network, torch_dtype=torch.float16) pipe = pipe.to("cuda") pipe.set_progress_bar_config(disable=True) self.pipe = pipe if args.run_compile: pipe.unet.to(memory_format=torch.channels_last) pipe.adapter.to(memory_format=torch.channels_last) print("Run torch compile") pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) pipe.adapter = torch.compile(pipe.adapter, mode="reduce-overhead", fullgraph=True) self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt]) class T2IAdapterSDXLBenchmark(T2IAdapterBenchmark): pipeline_class = StableDiffusionXLAdapterPipeline root_ckpt = "stabilityai/stable-diffusion-xl-base-1.0" url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_for_adapter_sdxl.png" image = load_image(url) def __init__(self, args): super().__init__(args)