File size: 8,317 Bytes
c16a841
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e3b30d
 
c16a841
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import random
import torch
import cv2
import gradio as gr
import numpy as np
from huggingface_hub import snapshot_download
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
from diffusers.utils import load_image
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import StableDiffusionXLControlNetImg2ImgPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from kolors.models.controlnet import ControlNetModel
from diffusers import AutoencoderKL
from kolors.models.unet_2d_condition import UNet2DConditionModel
from diffusers import EulerDiscreteScheduler
from PIL import Image
from annotator.util import resize_image, HWC3

device = "cuda"
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
ckpt_dir_ipa = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus")
ckpt_dir_canny = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Canny")

text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)

controlnet_canny = ControlNetModel.from_pretrained(f"{ckpt_dir_canny}", revision=None).half().to(device)

image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_dir_ipa}/image_encoder', ignore_mismatched_sizes=True).to(dtype=torch.float16, device=device)
ip_img_size = 336
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size)

pipe_canny = StableDiffusionXLControlNetImg2ImgPipeline(
    vae=vae,
    controlnet=controlnet_canny,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=scheduler,
    image_encoder=image_encoder,
    feature_extractor=clip_image_processor,
    force_zeros_for_empty_prompt=False
)

pipe_canny.load_ip_adapter(f'{ckpt_dir_ipa}', subfolder="", weight_name=["ip_adapter_plus_general.bin"])

def process_canny_condition(image, canny_threods=[100, 200]):
    np_image = image.copy()
    np_image = cv2.Canny(np_image, canny_threods[0], canny_threods[1])
    np_image = np_image[:, :, None]
    np_image = np.concatenate([np_image, np_image, np_image], axis=2)
    np_image = HWC3(np_image)
    return Image.fromarray(np_image)

MAX_SEED = np.iinfo(np.int32).max
#MAX_IMAGE_SIZE = 1024
MAX_IMAGE_SIZE = 512

def infer_canny(prompt,
                image=None,
                ipa_img=None,
                negative_prompt="nsfw,脸部阴影,低分辨率,糟糕的解剖结构、糟糕的手,缺失手指、质量最差、低质量、jpeg伪影、模糊、糟糕,黑脸,霓虹灯",
                seed=66,
                randomize_seed=False,
                guidance_scale=5.0,
                num_inference_steps=50,
                controlnet_conditioning_scale=0.5,
                control_guidance_end=0.9,
                strength=1.0,
                ip_scale=0.5,
                ):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    init_image = resize_image(image, MAX_IMAGE_SIZE)
    pipe = pipe_canny.to("cuda")
    pipe.set_ip_adapter_scale([ip_scale])
    condi_img = process_canny_condition(np.array(init_image))
    image = pipe(
        prompt=prompt,
        image=init_image,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        control_guidance_end=control_guidance_end,
        ip_adapter_image=[ipa_img],
        strength=strength,
        control_image=condi_img,
        negative_prompt=negative_prompt,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        num_images_per_prompt=1,
        generator=generator,
    ).images[0]
    return [condi_img, image], seed

canny_examples = [
    ["一个红色头发的女孩,唯美风景,清新明亮,斑驳的光影,最好的质量,超细节,8K画质",
     "image/woman_2.png", "image/2.png"],
]

css = """
#col-left {
    margin: 0 auto;
    max-width: 600px;
}
#col-right {
    margin: 0 auto;
    max-width: 750px;
}
#button {
    color: blue;
}
"""

def load_description(fp):
    with open(fp, 'r', encoding='utf-8') as f:
        content = f.read()
    return content

with gr.Blocks(css=css) as CannyApp:
    gr.HTML(load_description("assets/title.md"))
    with gr.Row():
        with gr.Column(elem_id="col-left"):
            with gr.Row():
                prompt = gr.Textbox(
                    label="Prompt",
                    placeholder="Enter your prompt",
                    lines=2
                )
            with gr.Row():
                image = gr.Image(label="Image", type="pil")
                ipa_image = gr.Image(label="IP-Adapter-Image", type="pil")
            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt = gr.Textbox(
                    label="Negative prompt",
                    placeholder="Enter a negative prompt",
                    visible=True,
                    value="nsfw,脸部阴影,低分辨率,糟糕的解剖结构、糟糕的手,缺失手指、质量最差、低质量、jpeg伪影、模糊、糟糕,黑脸,霓虹灯"
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                with gr.Row():
                    guidance_scale = gr.Slider(
                        label="Guidance scale",
                        minimum=0.0,
                        maximum=10.0,
                        step=0.1,
                        value=5.0,
                    )
                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=10,
                        maximum=50,
                        step=1,
                        value=30,
                    )
                with gr.Row():
                    controlnet_conditioning_scale = gr.Slider(
                        label="Controlnet Conditioning Scale",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=0.5,
                    )
                    control_guidance_end = gr.Slider(
                        label="Control Guidance End",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=0.9,
                    )
                with gr.Row():
                    strength = gr.Slider(
                        label="Strength",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=1.0,
                    )
                    ip_scale = gr.Slider(
                        label="IP_Scale",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=0.5,
                    )
            with gr.Row():
                canny_button = gr.Button("Canny", elem_id="button")

        with gr.Column(elem_id="col-right"):
            result = gr.Gallery(label="Result", show_label=False, columns=2)
            seed_used = gr.Number(label="Seed Used")

    with gr.Row():
        gr.Examples(
            fn=infer_canny,
            examples=canny_examples,
            inputs=[prompt, image, ipa_image],
            outputs=[result, seed_used],
            label="Canny"
        )

    canny_button.click(
        fn=infer_canny,
        inputs=[prompt, image, ipa_image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength, ip_scale],
        outputs=[result, seed_used]
    )

CannyApp.queue().launch(debug=True, share=True)