Spaces:
Runtime error
Runtime error
File size: 8,317 Bytes
c16a841 8e3b30d c16a841 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import random
import torch
import cv2
import gradio as gr
import numpy as np
from huggingface_hub import snapshot_download
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
from diffusers.utils import load_image
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import StableDiffusionXLControlNetImg2ImgPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from kolors.models.controlnet import ControlNetModel
from diffusers import AutoencoderKL
from kolors.models.unet_2d_condition import UNet2DConditionModel
from diffusers import EulerDiscreteScheduler
from PIL import Image
from annotator.util import resize_image, HWC3
device = "cuda"
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
ckpt_dir_ipa = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus")
ckpt_dir_canny = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Canny")
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
controlnet_canny = ControlNetModel.from_pretrained(f"{ckpt_dir_canny}", revision=None).half().to(device)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_dir_ipa}/image_encoder', ignore_mismatched_sizes=True).to(dtype=torch.float16, device=device)
ip_img_size = 336
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size)
pipe_canny = StableDiffusionXLControlNetImg2ImgPipeline(
vae=vae,
controlnet=controlnet_canny,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
image_encoder=image_encoder,
feature_extractor=clip_image_processor,
force_zeros_for_empty_prompt=False
)
pipe_canny.load_ip_adapter(f'{ckpt_dir_ipa}', subfolder="", weight_name=["ip_adapter_plus_general.bin"])
def process_canny_condition(image, canny_threods=[100, 200]):
np_image = image.copy()
np_image = cv2.Canny(np_image, canny_threods[0], canny_threods[1])
np_image = np_image[:, :, None]
np_image = np.concatenate([np_image, np_image, np_image], axis=2)
np_image = HWC3(np_image)
return Image.fromarray(np_image)
MAX_SEED = np.iinfo(np.int32).max
#MAX_IMAGE_SIZE = 1024
MAX_IMAGE_SIZE = 512
def infer_canny(prompt,
image=None,
ipa_img=None,
negative_prompt="nsfw,脸部阴影,低分辨率,糟糕的解剖结构、糟糕的手,缺失手指、质量最差、低质量、jpeg伪影、模糊、糟糕,黑脸,霓虹灯",
seed=66,
randomize_seed=False,
guidance_scale=5.0,
num_inference_steps=50,
controlnet_conditioning_scale=0.5,
control_guidance_end=0.9,
strength=1.0,
ip_scale=0.5,
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
init_image = resize_image(image, MAX_IMAGE_SIZE)
pipe = pipe_canny.to("cuda")
pipe.set_ip_adapter_scale([ip_scale])
condi_img = process_canny_condition(np.array(init_image))
image = pipe(
prompt=prompt,
image=init_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
control_guidance_end=control_guidance_end,
ip_adapter_image=[ipa_img],
strength=strength,
control_image=condi_img,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
generator=generator,
).images[0]
return [condi_img, image], seed
canny_examples = [
["一个红色头发的女孩,唯美风景,清新明亮,斑驳的光影,最好的质量,超细节,8K画质",
"image/woman_2.png", "image/2.png"],
]
css = """
#col-left {
margin: 0 auto;
max-width: 600px;
}
#col-right {
margin: 0 auto;
max-width: 750px;
}
#button {
color: blue;
}
"""
def load_description(fp):
with open(fp, 'r', encoding='utf-8') as f:
content = f.read()
return content
with gr.Blocks(css=css) as CannyApp:
gr.HTML(load_description("assets/title.md"))
with gr.Row():
with gr.Column(elem_id="col-left"):
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt",
lines=2
)
with gr.Row():
image = gr.Image(label="Image", type="pil")
ipa_image = gr.Image(label="IP-Adapter-Image", type="pil")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(
label="Negative prompt",
placeholder="Enter a negative prompt",
visible=True,
value="nsfw,脸部阴影,低分辨率,糟糕的解剖结构、糟糕的手,缺失手指、质量最差、低质量、jpeg伪影、模糊、糟糕,黑脸,霓虹灯"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=5.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=10,
maximum=50,
step=1,
value=30,
)
with gr.Row():
controlnet_conditioning_scale = gr.Slider(
label="Controlnet Conditioning Scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.5,
)
control_guidance_end = gr.Slider(
label="Control Guidance End",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.9,
)
with gr.Row():
strength = gr.Slider(
label="Strength",
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
)
ip_scale = gr.Slider(
label="IP_Scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.5,
)
with gr.Row():
canny_button = gr.Button("Canny", elem_id="button")
with gr.Column(elem_id="col-right"):
result = gr.Gallery(label="Result", show_label=False, columns=2)
seed_used = gr.Number(label="Seed Used")
with gr.Row():
gr.Examples(
fn=infer_canny,
examples=canny_examples,
inputs=[prompt, image, ipa_image],
outputs=[result, seed_used],
label="Canny"
)
canny_button.click(
fn=infer_canny,
inputs=[prompt, image, ipa_image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength, ip_scale],
outputs=[result, seed_used]
)
CannyApp.queue().launch(debug=True, share=True) |