MotionClone-Text-to-Video / t2v_video_app.py
svjack's picture
Update t2v_video_app.py
4ab1b29 verified
raw
history blame
14.5 kB
import gradio as gr
from omegaconf import OmegaConf
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from transformers import CLIPTextModel, CLIPTokenizer
from motionclone.models.unet import UNet3DConditionModel
from motionclone.pipelines.pipeline_animation import AnimationPipeline
from motionclone.utils.util import load_weights
from diffusers.utils.import_utils import is_xformers_available
from motionclone.utils.motionclone_functions import *
import json
from motionclone.utils.xformer_attention import *
import os
import numpy as np
import imageio
import shutil
import subprocess
# 权重下载函数
def download_weights():
try:
# 创建模型目录
os.makedirs("models", exist_ok=True)
os.makedirs("models/DreamBooth_LoRA", exist_ok=True)
os.makedirs("models/Motion_Module", exist_ok=True)
os.makedirs("models/SparseCtrl", exist_ok=True)
# 下载 Stable Diffusion 模型
if not os.path.exists("models/StableDiffusion"):
subprocess.run(["git", "clone", "https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5", "models/StableDiffusion"])
# 下载 DreamBooth LoRA 模型
if not os.path.exists("models/DreamBooth_LoRA/realisticVisionV60B1_v51VAE.safetensors"):
subprocess.run(["wget", "https://huggingface.co/svjack/Realistic-Vision-V6.0-B1/resolve/main/realisticVisionV60B1_v51VAE.safetensors", "-O", "models/DreamBooth_LoRA/realisticVisionV60B1_v51VAE.safetensors"])
# 下载 Motion Module 模型
if not os.path.exists("models/Motion_Module/v3_sd15_mm.ckpt"):
subprocess.run(["wget", "https://huggingface.co/guoyww/animatediff/resolve/main/v3_sd15_mm.ckpt", "-O", "models/Motion_Module/v3_sd15_mm.ckpt"])
if not os.path.exists("models/Motion_Module/v3_sd15_adapter.ckpt"):
subprocess.run(["wget", "https://huggingface.co/guoyww/animatediff/resolve/main/v3_sd15_adapter.ckpt", "-O", "models/Motion_Module/v3_sd15_adapter.ckpt"])
# 下载 SparseCtrl 模型
if not os.path.exists("models/SparseCtrl/v3_sd15_sparsectrl_rgb.ckpt"):
subprocess.run(["wget", "https://huggingface.co/guoyww/animatediff/resolve/main/v3_sd15_sparsectrl_rgb.ckpt", "-O", "models/SparseCtrl/v3_sd15_sparsectrl_rgb.ckpt"])
if not os.path.exists("models/SparseCtrl/v3_sd15_sparsectrl_scribble.ckpt"):
subprocess.run(["wget", "https://huggingface.co/guoyww/animatediff/resolve/main/v3_sd15_sparsectrl_scribble.ckpt", "-O", "models/SparseCtrl/v3_sd15_sparsectrl_scribble.ckpt"])
print("Weights downloaded successfully.")
except Exception as e:
print(f"Error downloading weights: {e}")
# 下载权重
download_weights()
# 加载 model_config
model_config_path = "configs/model_config/model_config.yaml"
model_config = OmegaConf.load(model_config_path)
# 硬编码的配置值
config = {
"motion_module": "models/Motion_Module/v3_sd15_mm.ckpt",
"dreambooth_path": "models/DreamBooth_LoRA/realisticVisionV60B1_v51VAE.safetensors",
"model_config": model_config,
"W": 512,
"H": 512,
"L": 16,
"motion_guidance_blocks": ['up_blocks.1',]
}
# 写死 pretrained_model_path
pretrained_model_path = "models/StableDiffusion"
# 模型初始化逻辑
def initialize_models():
# 设置设备
adopted_dtype = torch.float16
device = "cuda"
set_all_seed(42)
# 加载模型组件
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder").to(device).to(dtype=adopted_dtype)
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").to(device).to(dtype=adopted_dtype)
# 更新配置
config["width"] = config.get("W", 512)
config["height"] = config.get("H", 512)
config["video_length"] = config.get("L", 16)
# 加载模型配置
unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", unet_additional_kwargs=config["model_config"]["unet_additional_kwargs"]).to(device).to(dtype=adopted_dtype)
# 启用 xformers
if is_xformers_available():
unet.enable_xformers_memory_efficient_attention()
# 创建 pipeline
pipeline = AnimationPipeline(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
controlnet=None,
scheduler=DDIMScheduler(**config["model_config"]["noise_scheduler_kwargs"]),
).to(device)
# 加载权重
pipeline = load_weights(
pipeline,
motion_module_path=config["motion_module"],
dreambooth_model_path=config["dreambooth_path"],
).to(device)
pipeline.text_encoder.to(dtype=adopted_dtype)
# 加载自定义函数
pipeline.scheduler.customized_step = schedule_customized_step.__get__(pipeline.scheduler)
pipeline.scheduler.customized_set_timesteps = schedule_set_timesteps.__get__(pipeline.scheduler)
pipeline.unet.forward = unet_customized_forward.__get__(pipeline.unet)
pipeline.sample_video = sample_video.__get__(pipeline)
pipeline.single_step_video = single_step_video.__get__(pipeline)
pipeline.get_temp_attn_prob = get_temp_attn_prob.__get__(pipeline)
pipeline.add_noise = add_noise.__get__(pipeline)
pipeline.compute_temp_loss = compute_temp_loss.__get__(pipeline)
pipeline.obtain_motion_representation = obtain_motion_representation.__get__(pipeline)
# 冻结 UNet 参数
for param in pipeline.unet.parameters():
param.requires_grad = False
pipeline.input_config, pipeline.unet.input_config = config, config
# 准备 UNet 的 attention 和 conv
pipeline.unet = prep_unet_attention(pipeline.unet, config["motion_guidance_blocks"])
pipeline.unet = prep_unet_conv(pipeline.unet)
return pipeline
# 初始化模型
pipeline = initialize_models()
def generate_video(uploaded_video, motion_representation_save_dir, generated_videos_save_dir, visible_gpu, default_seed, without_xformers, cfg_scale, negative_prompt, positive_prompt, inference_steps, guidance_scale, guidance_steps, warm_up_steps, cool_up_steps, motion_guidance_weight, motion_guidance_blocks, add_noise_step, new_prompt, seed):
# 更新配置
config.update({
"cfg_scale": cfg_scale,
"negative_prompt": negative_prompt,
"positive_prompt": positive_prompt,
"inference_steps": inference_steps,
"guidance_scale": guidance_scale,
"guidance_steps": guidance_steps,
"warm_up_steps": warm_up_steps,
"cool_up_steps": cool_up_steps,
"motion_guidance_weight": motion_guidance_weight,
#"motion_guidance_blocks": motion_guidance_blocks,
"add_noise_step": add_noise_step
})
# 设置环境变量
os.environ["CUDA_VISIBLE_DEVICES"] = visible_gpu or str(os.getenv('CUDA_VISIBLE_DEVICES', 0))
device = pipeline.device
# 创建保存目录
if not os.path.exists(generated_videos_save_dir):
os.makedirs(generated_videos_save_dir)
# 处理上传的视频
if uploaded_video is not None:
pipeline.scheduler.customized_set_timesteps(config["inference_steps"], config["guidance_steps"], config["guidance_scale"], device=device, timestep_spacing_type="uneven")
# 将上传的视频保存到指定路径
video_path = os.path.join(generated_videos_save_dir, os.path.basename(uploaded_video))
#shutil.move(uploaded_video, video_path)
shutil.copy2(uploaded_video, video_path)
print("video_path :")
print(video_path)
# 更新配置
config["video_path"] = video_path
config["new_prompt"] = new_prompt + config.get("positive_prompt", "")
from types import SimpleNamespace
pipeline.input_config, pipeline.unet.input_config = SimpleNamespace(**config), SimpleNamespace(**config)
print("pipeline.input_config.video_path :")
print(pipeline.input_config.video_path)
# 提取运动表示
seed_motion = seed if seed is not None else default_seed
generator = torch.Generator(device=pipeline.device)
generator.manual_seed(seed_motion)
if not os.path.exists(motion_representation_save_dir):
os.makedirs(motion_representation_save_dir)
motion_representation_path = os.path.join(motion_representation_save_dir, os.path.splitext(os.path.basename(config["video_path"]))[0] + '.pt')
pipeline.obtain_motion_representation(generator=generator, motion_representation_path=motion_representation_path)
# 生成视频
seed = seed_motion
generator = torch.Generator(device=pipeline.device)
generator.manual_seed(seed)
pipeline.input_config.seed = seed
videos = pipeline.sample_video(generator=generator)
#print("videos :")
#print(videos)
videos = rearrange(videos, "b c f h w -> b f h w c")
save_path = os.path.join(generated_videos_save_dir, os.path.splitext(os.path.basename(config["video_path"]))[0] + "_" + config["new_prompt"].strip().replace(' ', '_') + str(seed_motion) + "_" + str(seed) + '.mp4')
videos_uint8 = (videos[0] * 255).astype(np.uint8)
imageio.mimwrite(save_path, videos_uint8, fps=8)
print(save_path, "is done")
return save_path
else:
return "No video uploaded."
# 使用 Gradio Blocks 构建界面
with gr.Blocks() as demo:
# 页面标题和描述
gr.Markdown("# MotionClone-Text-to-Video Generation")
gr.Markdown("This tool allows you to generate videos from text prompts using a pre-trained model. Upload a motion reference video, provide a new prompt, and adjust the settings to create your custom video.")
# 主要输入区域
with gr.Row():
with gr.Column():
# 视频上传
uploaded_video = gr.Video(label="Upload Video")
# 新提示词
new_prompt = gr.Textbox(label="New Prompt", value="A beautiful scene", lines=2)
# 种子
seed = gr.Number(label="Seed", value=42)
# 生成按钮
generate_button = gr.Button("Generate Video")
with gr.Column():
# 输出视频
output_video = gr.Video(label="Generated Video")
# 高级设置区域
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
with gr.Column():
motion_representation_save_dir = gr.Textbox(label="Motion Representation Save Dir", value="motion_representation/")
generated_videos_save_dir = gr.Textbox(label="Generated Videos Save Dir", value="generated_videos")
visible_gpu = gr.Textbox(label="Visible GPU", value="0")
default_seed = gr.Number(label="Default Seed", value=2025)
without_xformers = gr.Checkbox(label="Without Xformers", value=False)
with gr.Column():
cfg_scale = gr.Number(label="CFG Scale", value=7.5)
negative_prompt = gr.Textbox(label="Negative Prompt", value="bad anatomy, extra limbs, ugly, deformed, noisy, blurry, distorted, out of focus, poorly drawn face, poorly drawn hands, missing fingers")
positive_prompt = gr.Textbox(label="Positive Prompt", value="8k, high detailed, best quality, film grain, Fujifilm XT3")
inference_steps = gr.Number(label="Inference Steps", value=100)
guidance_scale = gr.Number(label="Guidance Scale", value=0.3)
guidance_steps = gr.Number(label="Guidance Steps", value=50)
warm_up_steps = gr.Number(label="Warm Up Steps", value=10)
cool_up_steps = gr.Number(label="Cool Up Steps", value=10)
motion_guidance_weight = gr.Number(label="Motion Guidance Weight", value=2000)
motion_guidance_blocks = gr.Textbox(label="Motion Guidance Blocks", value="['up_blocks.1']")
add_noise_step = gr.Number(label="Add Noise Step", value=400)
# 绑定生成函数
generate_button.click(
generate_video,
inputs=[
uploaded_video, motion_representation_save_dir, generated_videos_save_dir, visible_gpu, default_seed, without_xformers, cfg_scale, negative_prompt, positive_prompt, inference_steps, guidance_scale, guidance_steps, warm_up_steps, cool_up_steps, motion_guidance_weight, motion_guidance_blocks, add_noise_step, new_prompt, seed
],
outputs=output_video
)
# 定义示例数据
examples = [
{"video_path": "reference_videos/camera_zoom_in.mp4", "new_prompt": "Relics on the seabed", "seed": 42},
{"video_path": "reference_videos/camera_zoom_in.mp4", "new_prompt": "A road in the mountain", "seed": 42},
{"video_path": "reference_videos/camera_zoom_in.mp4", "new_prompt": "Caves, a path for exploration", "seed": 2026},
{"video_path": "reference_videos/camera_zoom_in.mp4", "new_prompt": "Railway for train", "seed": 2026},
{"video_path": "reference_videos/camera_zoom_out.mp4", "new_prompt": "Tree, in the mountain", "seed": 2026},
{"video_path": "reference_videos/camera_zoom_out.mp4", "new_prompt": "Red car on the track", "seed": 2026},
{"video_path": "reference_videos/camera_zoom_out.mp4", "new_prompt": "Man, standing in his garden.", "seed": 2026},
{"video_path": "reference_videos/camera_1.mp4", "new_prompt": "A island, on the ocean, sunny day", "seed": 42},
{"video_path": "reference_videos/camera_1.mp4", "new_prompt": "A tower, with fireworks", "seed": 42},
{"video_path": "reference_videos/camera_pan_up.mp4", "new_prompt": "Beautiful house, around with flowers", "seed": 42},
{"video_path": "reference_videos/camera_translation_2.mp4", "new_prompt": "Forest, in winter", "seed": 2028},
{"video_path": "reference_videos/camera_pan_down.mp4", "new_prompt": "Eagle, standing in the tree", "seed": 2026}
]
examples = list(map(lambda d: [d["video_path"], d["new_prompt"], d["seed"]], examples))
# 添加示例
gr.Examples(
examples=examples,
inputs=[uploaded_video, new_prompt, seed],
outputs=output_video,
fn=generate_video,
cache_examples=False
)
# 启动应用
demo.launch(share = True)