MotionClone-Text-to-Video / t2v_video_sample.py
svjack's picture
Upload folder using huggingface_hub
ce68674 verified
raw
history blame
6.78 kB
import argparse
from omegaconf import OmegaConf
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from transformers import CLIPTextModel, CLIPTokenizer
from motionclone.models.unet import UNet3DConditionModel
from motionclone.pipelines.pipeline_animation import AnimationPipeline
from motionclone.utils.util import load_weights
from diffusers.utils.import_utils import is_xformers_available
from motionclone.utils.motionclone_functions import *
import json
from motionclone.utils.xformer_attention import *
def main(args):
os.environ["CUDA_VISIBLE_DEVICES"] = args.visible_gpu or str(os.getenv('CUDA_VISIBLE_DEVICES', 0))
config = OmegaConf.load(args.inference_config)
adopted_dtype = torch.float16
device = "cuda"
set_all_seed(42)
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_path, subfolder="text_encoder").to(device).to(dtype=adopted_dtype)
vae = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae").to(device).to(dtype=adopted_dtype)
config.width = config.get("W", args.W)
config.height = config.get("H", args.H)
config.video_length = config.get("L", args.L)
if not os.path.exists(args.generated_videos_save_dir):
os.makedirs(args.generated_videos_save_dir)
OmegaConf.save(config, os.path.join(args.generated_videos_save_dir,"inference_config.json"))
model_config = OmegaConf.load(config.get("model_config", ""))
unet = UNet3DConditionModel.from_pretrained_2d(args.pretrained_model_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(model_config.unet_additional_kwargs),).to(device).to(dtype=adopted_dtype)
# set xformers
if is_xformers_available() and (not args.without_xformers):
unet.enable_xformers_memory_efficient_attention()
pipeline = AnimationPipeline(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
controlnet=None,
scheduler=DDIMScheduler(**OmegaConf.to_container(model_config.noise_scheduler_kwargs)),
).to(device)
pipeline = load_weights(
pipeline,
# motion module
motion_module_path = config.get("motion_module", ""),
dreambooth_model_path = config.get("dreambooth_path", ""),
).to(device)
pipeline.text_encoder.to(dtype=adopted_dtype)
# load customized functions from motionclone_functions
pipeline.scheduler.customized_step = schedule_customized_step.__get__(pipeline.scheduler)
pipeline.scheduler.customized_set_timesteps = schedule_set_timesteps.__get__(pipeline.scheduler)
pipeline.unet.forward = unet_customized_forward.__get__(pipeline.unet)
pipeline.sample_video = sample_video.__get__(pipeline)
pipeline.single_step_video = single_step_video.__get__(pipeline)
pipeline.get_temp_attn_prob = get_temp_attn_prob.__get__(pipeline)
pipeline.add_noise = add_noise.__get__(pipeline)
pipeline.compute_temp_loss = compute_temp_loss.__get__(pipeline)
pipeline.obtain_motion_representation = obtain_motion_representation.__get__(pipeline)
for param in pipeline.unet.parameters():
param.requires_grad = False
pipeline.input_config, pipeline.unet.input_config = config, config
pipeline.unet = prep_unet_attention(pipeline.unet,pipeline.input_config.motion_guidance_blocks)
pipeline.unet = prep_unet_conv(pipeline.unet)
pipeline.scheduler.customized_set_timesteps(config.inference_steps, config.guidance_steps,config.guidance_scale,device=device,timestep_spacing_type = "uneven")
# pipeline.scheduler.customized_set_timesteps(config.inference_steps,device=device,timestep_spacing_type = "linspace")
with open(args.examples, 'r') as files:
for line in files:
# prepare infor of each case
example_infor = json.loads(line)
config.video_path = example_infor["video_path"]
config.new_prompt = example_infor["new_prompt"] + config.get("positive_prompt", "")
pipeline.input_config, pipeline.unet.input_config = config, config # update config
# perform motion representation extraction
seed_motion = example_infor.get("seed", args.default_seed)
generator = torch.Generator(device=pipeline.device)
generator.manual_seed(seed_motion)
if not os.path.exists(args.motion_representation_save_dir):
os.makedirs(args.motion_representation_save_dir)
motion_representation_path = os.path.join(args.motion_representation_save_dir, os.path.splitext(os.path.basename(config.video_path))[0] + '.pt')
pipeline.obtain_motion_representation(generator= generator, motion_representation_path = motion_representation_path)
# perform video generation
seed = seed_motion # can assign other seed here
generator = torch.Generator(device=pipeline.device)
generator.manual_seed(seed)
pipeline.input_config.seed = seed
videos = pipeline.sample_video(generator = generator,)
videos = rearrange(videos, "b c f h w -> b f h w c")
save_path = os.path.join(args.generated_videos_save_dir, os.path.splitext(os.path.basename(config.video_path))[0]
+ "_" + config.new_prompt.strip().replace(' ', '_') + str(seed_motion) + "_" +str(seed)+'.mp4')
videos_uint8 = (videos[0] * 255).astype(np.uint8)
imageio.mimwrite(save_path, videos_uint8, fps=8)
print(save_path,"is done")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--pretrained-model-path", type=str, default="models/StableDiffusion",)
parser.add_argument("--inference_config", type=str, default="configs/t2v_camera.yaml")
parser.add_argument("--examples", type=str, default="configs/t2v_camera.jsonl")
parser.add_argument("--motion-representation-save-dir", type=str, default="motion_representation/")
parser.add_argument("--generated-videos-save-dir", type=str, default="generated_videos")
parser.add_argument("--visible_gpu", type=str, default=None)
parser.add_argument("--default-seed", type=int, default=2025)
parser.add_argument("--L", type=int, default=16)
parser.add_argument("--W", type=int, default=512)
parser.add_argument("--H", type=int, default=512)
parser.add_argument("--without-xformers", action="store_true")
args = parser.parse_args()
main(args)