File size: 9,041 Bytes
3b36ece |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
# 新增依赖
import gradio as gr
import cv2
import numpy as np
import os
from datetime import datetime # 新增时间模块
from scenedetect import open_video, SceneManager
from scenedetect.detectors import ContentDetector
from moviepy.editor import VideoFileClip
import random
from functools import partial
import clip
import decord
import nncore
import torch
import torchvision.transforms.functional as F
from decord import VideoReader
from nncore.engine import load_checkpoint
from nncore.nn import build_model
import pandas as pd
def convert_time(seconds):
minutes, seconds = divmod(round(max(seconds, 0)), 60)
return f'{minutes:02d}:{seconds:02d}'
# R2-Tuning 模型配置
TUNING_CONFIG = 'configs/qvhighlights/r2_tuning_qvhighlights.py'
TUNING_WEIGHT = 'https://huggingface.co/yeliudev/R2-Tuning/resolve/main/checkpoints/r2_tuning_qvhighlights-ed516355.pth'
# 初始化R2-Tuning模型
def init_tuning_model(config, checkpoint):
cfg = nncore.Config.from_file(config)
cfg.model.init = True
if checkpoint.startswith('http'):
checkpoint = nncore.download(checkpoint, out_dir='checkpoints')
model = build_model(cfg.model, dist=False).eval()
model = load_checkpoint(model, checkpoint, warning=False)
return model, cfg
tuning_model, tuning_cfg = init_tuning_model(TUNING_CONFIG, TUNING_WEIGHT)
# 视频预处理函数(来自第一个应用)
def preprocess_video(video_path, cfg):
decord.bridge.set_bridge('torch')
vr = decord.VideoReader(video_path)
stride = vr.get_avg_fps() / cfg.data.val.fps
fm_idx = [min(round(i), len(vr) - 1) for i in np.arange(0, len(vr), stride).tolist()]
video = vr.get_batch(fm_idx).permute(0, 3, 1, 2).float() / 255
size = 336 if '336px' in cfg.model.arch else 224
h, w = video.size(-2), video.size(-1)
s = min(h, w)
x, y = round((h - s) / 2), round((w - s) / 2)
video = video[..., x:x + s, y:y + s]
video = F.resize(video, size=(size, size))
video = F.normalize(video, (0.481, 0.459, 0.408), (0.269, 0.261, 0.276))
return video.reshape(video.size(0), -1).unsqueeze(0)
# 在calculate_saliency函数中增加视频时长返回
def calculate_saliency(video_path, query, model, cfg):
if len(query) == 0:
return None, None, 0
video = preprocess_video(video_path, cfg)
query = clip.tokenize(query, truncate=True)
device = next(model.parameters()).device
data = dict(video=video.to(device), query=query.to(device), fps=[cfg.data.val.fps])
with torch.inference_mode():
pred = model(data)
hd = pred['_out']['saliency'].cpu()
hd = ((hd - hd.min()) / (hd.max() - hd.min()) * 0.9 + 0.05).numpy()
time_axis = np.arange(0, len(hd) * 2, 2)
# 获取视频总时长
vr = decord.VideoReader(video_path)
duration = len(vr) / vr.get_avg_fps()
return hd, time_axis, duration
# 修改后的场景检测函数
def find_scenes(video_path, threshold, query):
# 初始化输出目录
timestamp = datetime.now().strftime("%Y%m%d-%H%M%S")
output_dir = f"output_{timestamp}"
os.makedirs(output_dir, exist_ok=True)
# 计算saliency score
saliency_scores, time_points, total_duration = calculate_saliency(video_path, query, tuning_model, tuning_cfg)
if saliency_scores is None:
raise gr.Error("请输入有效的文本查询")
# 线性插值处理
new_time = np.linspace(0, total_duration, num=int(total_duration*10)) # 每0.5秒一个点
interp_scores = np.interp(new_time, time_points, saliency_scores)
# 场景检测(原逻辑)
filename = os.path.splitext(os.path.basename(video_path))[0]
video = open_video(video_path)
scene_manager = SceneManager()
scene_manager.add_detector(ContentDetector(threshold=threshold))
scene_manager.detect_scenes(video, show_progress=True)
scene_list = scene_manager.get_scene_list()
if not scene_list:
gr.Warning("No scenes detected in this video")
return None, None, None, None
# 处理每个场景片段
processed_scenes = []
for i, shot in enumerate(scene_list):
# 获取时间信息
start_sec = shot[0].get_seconds()
end_sec = shot[1].get_seconds()
# 使用插值后的得分计算
start_idx = np.searchsorted(new_time, start_sec, side='left')
end_idx = np.searchsorted(new_time, end_sec, side='right')
valid_scores = interp_scores[start_idx:end_idx]
# 处理可能的空值(理论上插值后不会出现)
valid_scores = valid_scores[~np.isnan(valid_scores)]
scene_score = valid_scores.mean() if len(valid_scores) > 0 else 0.0
# 保存片段信息
scene_info = {
"start": convert_time(start_sec),
"end": convert_time(end_sec),
"score": round(float(scene_score), 3),
"start_sec": start_sec,
"end_sec": end_sec
}
processed_scenes.append(scene_info)
# 按得分排序
processed_scenes.sort(key=lambda x: x['score'], reverse=True)
# 生成输出内容
timecodes = [{"title": filename + ".mp4", "fps": scene_list[0][0].get_framerate()}]
shots = []
stills = []
for idx, scene in enumerate(processed_scenes):
# 生成片段名称
shot_name = f"shot_{idx+1}_{filename}"
target_name = os.path.join(output_dir, f"{shot_name}.mp4")
# 分割视频片段
with VideoFileClip(video_path) as clip:
subclip = clip.subclip(scene['start_sec'], scene['end_sec'])
subclip.write_videofile(target_name,
codec="libx264",
audio_codec="aac",
threads=4,
preset="fast",
ffmpeg_params=["-crf", "23"])
# 截取缩略图
vid = cv2.VideoCapture(video_path)
vid.set(cv2.CAP_PROP_POS_MSEC, scene['start_sec']*1000)
ret, frame = vid.read()
img_path = os.path.join(output_dir, f"{shot_name}_screenshot.png")
cv2.imwrite(img_path, frame)
vid.release()
# 保存结果(带片段名称的标签)
timecodes.append({
"tc_in": scene['start'],
"tc_out": scene['end'],
"score": scene['score'],
"shot_name": shot_name
})
shots.append(target_name)
stills.append((img_path, f'{shot_name}\nScore: {scene["score"]:.3f}'))
# 生成折线图数据(使用插值后的数据)
plot_data = pd.DataFrame({
'x': new_time,
'y': interp_scores
})
return timecodes, shots, stills, plot_data
# 修改后的界面
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("""
# 增强版场景编辑检测
新增功能:
1. 输入文本查询分析视频内容相关性
2. 显示相关性时序折线图
3. 按相关性得分排序输出片段
""")
with gr.Row():
with gr.Column():
video_input = gr.Video(sources="upload", format="mp4", label="视频输入")
query_input = gr.Textbox(label="文本查询", placeholder="输入描述视频内容的文本(5-15单词为佳)")
threshold = gr.Slider(label="场景切换检测阈值", minimum=15.0, maximum=40.0, value=27.0)
with gr.Row():
clear_button = gr.Button("清除")
run_button = gr.Button("开始处理", variant="primary")
plot_output = gr.LinePlot(x='x', y='y', x_title='时间(秒)',
y_title='相关性得分', label='时序相关性分析')
with gr.Column():
json_output = gr.JSON(label="场景分析结果(按得分排序)")
file_output = gr.File(label="分割片段下载")
gallery_output = gr.Gallery(label="场景缩略图", object_fit="cover", columns=3)
run_button.click(
fn=find_scenes,
inputs=[video_input, threshold, query_input],
outputs=[json_output, file_output, gallery_output, plot_output]
)
clear_button.click(
fn=lambda: [None, 27, None, None, None, None],
inputs=None,
outputs=[video_input, threshold, query_input, json_output, file_output, gallery_output]
)
gr.Examples(
examples=[
["anime_kiss.mp4", 27, "A romantic kiss scene between two characters"],
["anime_tear.mp4", 30, "An anime character is crying."]
],
inputs=[video_input, threshold, query_input],
outputs=[json_output, file_output, gallery_output, plot_output],
fn=find_scenes,
cache_examples=False
)
demo.queue().launch(debug=True, share=True) |