Spaces:
Running
Running
''' | |
python ds_add_emb.py svjack/Prince_Xiang_iclight_v2 image --output_path Prince_Xiang_iclight_v2_emb | |
python ds_add_emb.py svjack/Prince_Xiang_PhotoMaker_V2_10 image1 image2 --output_path Prince_Xiang_PhotoMaker_V2_10_emb | |
python ds_add_emb.py svjack/Prince_Xiang_ConsistentID_SDXL_10 image --output_path Prince_Xiang_ConsistentID_SDXL_10_emb | |
python ds_add_emb.py svjack/Prince_Xiang_PhotoMaker_V2_1280 image1 image2 --output_path Prince_Xiang_PhotoMaker_V2_1280_emb | |
python ds_add_emb.py svjack/Prince_Xiang_ConsistentID_SDXL_1280 image --output_path Prince_Xiang_ConsistentID_SDXL_1280_emb | |
''' | |
import argparse | |
from datasets import load_dataset | |
from gradio_client import Client, handle_file | |
import os | |
from uuid import uuid1 | |
def process_images(repo_id, image_columns, gradio_url, output_path): | |
# 加载数据集 | |
dataset = load_dataset(repo_id, split='train') | |
# 初始化Gradio Client | |
client = Client(gradio_url) | |
# 对每个图片列进行处理 | |
for col in image_columns: | |
print(f"Processing column: {col}") | |
embeddings = [] | |
for idx, image_path in enumerate(dataset[col]): | |
print(f"Processing image {idx+1}/{len(dataset[col])} in column {col}") | |
name = "{}.png".format(uuid1()) | |
image_path.save(name) | |
try: | |
result = client.predict( | |
image=handle_file(name), | |
api_name="/predict" | |
) | |
embeddings.append(result['embedding']) # 假设返回的字典中有'embedding'键 | |
except Exception as e: | |
print(f"Error processing image {idx+1}/{len(dataset[col])} in column {col}: {e}") | |
embeddings.append(None) | |
os.remove(name) | |
# 将结果添加到数据集中 | |
dataset = dataset.add_column(f"{col}_embedding", embeddings) | |
# 保存处理后的数据集 | |
dataset.save_to_disk(output_path) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Process images in a Hugging Face dataset using a Gradio API.") | |
parser.add_argument("repo_id", type=str, help="Hugging Face dataset repo ID") | |
parser.add_argument("image_columns", type=str, nargs='+', help="List of image column names") | |
parser.add_argument("--gradio_url", type=str, default="http://127.0.0.1:7860", help="Gradio API URL") | |
parser.add_argument("--output_path", type=str, default="processed_dataset", help="Output path to save the processed dataset") | |
args = parser.parse_args() | |
process_images(args.repo_id, args.image_columns, args.gradio_url, args.output_path) |