auraface-embedding / ds_add_emb.py
svjack's picture
Upload ds_add_emb.py
be6d0f3 verified
'''
python ds_add_emb.py svjack/Prince_Xiang_iclight_v2 image --output_path Prince_Xiang_iclight_v2_emb
python ds_add_emb.py svjack/Prince_Xiang_PhotoMaker_V2_10 image1 image2 --output_path Prince_Xiang_PhotoMaker_V2_10_emb
python ds_add_emb.py svjack/Prince_Xiang_ConsistentID_SDXL_10 image --output_path Prince_Xiang_ConsistentID_SDXL_10_emb
python ds_add_emb.py svjack/Prince_Xiang_PhotoMaker_V2_1280 image1 image2 --output_path Prince_Xiang_PhotoMaker_V2_1280_emb
python ds_add_emb.py svjack/Prince_Xiang_ConsistentID_SDXL_1280 image --output_path Prince_Xiang_ConsistentID_SDXL_1280_emb
'''
import argparse
from datasets import load_dataset
from gradio_client import Client, handle_file
import os
from uuid import uuid1
def process_images(repo_id, image_columns, gradio_url, output_path):
# 加载数据集
dataset = load_dataset(repo_id, split='train')
# 初始化Gradio Client
client = Client(gradio_url)
# 对每个图片列进行处理
for col in image_columns:
print(f"Processing column: {col}")
embeddings = []
for idx, image_path in enumerate(dataset[col]):
print(f"Processing image {idx+1}/{len(dataset[col])} in column {col}")
name = "{}.png".format(uuid1())
image_path.save(name)
try:
result = client.predict(
image=handle_file(name),
api_name="/predict"
)
embeddings.append(result['embedding']) # 假设返回的字典中有'embedding'键
except Exception as e:
print(f"Error processing image {idx+1}/{len(dataset[col])} in column {col}: {e}")
embeddings.append(None)
os.remove(name)
# 将结果添加到数据集中
dataset = dataset.add_column(f"{col}_embedding", embeddings)
# 保存处理后的数据集
dataset.save_to_disk(output_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Process images in a Hugging Face dataset using a Gradio API.")
parser.add_argument("repo_id", type=str, help="Hugging Face dataset repo ID")
parser.add_argument("image_columns", type=str, nargs='+', help="List of image column names")
parser.add_argument("--gradio_url", type=str, default="http://127.0.0.1:7860", help="Gradio API URL")
parser.add_argument("--output_path", type=str, default="processed_dataset", help="Output path to save the processed dataset")
args = parser.parse_args()
process_images(args.repo_id, args.image_columns, args.gradio_url, args.output_path)