genshin_impact_ccip / score_script.py
svjack's picture
Upload score_script.py
4a255ef verified
'''
python score_script.py . three_output
'''
import os
import json
from tqdm import tqdm
from PIL import Image
from ccip import _VALID_MODEL_NAMES, _DEFAULT_MODEL_NAMES, ccip_difference, ccip_default_threshold
from datasets import load_dataset
import pathlib
import argparse
# 加载数据集
Genshin_Impact_Illustration_ds = load_dataset("svjack/Genshin-Impact-Illustration")["train"]
ds_size = len(Genshin_Impact_Illustration_ds)
name_image_dict = {}
for i in range(ds_size):
row_dict = Genshin_Impact_Illustration_ds[i]
name_image_dict[row_dict["name"]] = row_dict["image"]
def _compare_with_dataset(imagex, model_name):
threshold = ccip_default_threshold(model_name)
results = []
for name, imagey in name_image_dict.items():
diff = ccip_difference(imagex, imagey)
result = {
"difference": diff,
"prediction": 'Same' if diff <= threshold else 'Not Same',
"name": name
}
results.append(result)
# 按照 diff 值进行排序
results.sort(key=lambda x: x["difference"])
return results
def process_image(image_path, model_name, output_dir):
image = Image.open(image_path)
results = _compare_with_dataset(image, model_name)
# 生成输出文件名
image_name = os.path.splitext(os.path.basename(image_path))[0]
output_file = os.path.join(output_dir, f"{image_name}.json")
# 保存结果到 JSON 文件
with open(output_file, 'w') as f:
json.dump(results, f, indent=4)
def main():
parser = argparse.ArgumentParser(description="Compare images with a dataset and save results as JSON.")
parser.add_argument("input_path", type=str, help="Path to the input image or directory containing images.")
parser.add_argument("output_dir", type=str, help="Directory to save the output JSON files.")
parser.add_argument("--model", type=str, default=_DEFAULT_MODEL_NAMES, choices=_VALID_MODEL_NAMES, help="Model to use for comparison.")
args = parser.parse_args()
# 确保输出目录存在
os.makedirs(args.output_dir, exist_ok=True)
# 判断输入路径是文件还是目录
if os.path.isfile(args.input_path):
image_paths = [args.input_path]
elif os.path.isdir(args.input_path):
image_paths = list(pathlib.Path(args.input_path).rglob("*.png")) + list(pathlib.Path(args.input_path).rglob("*.jpg"))
else:
raise ValueError("Input path must be a valid file or directory.")
# 处理每个图片
for image_path in tqdm(image_paths, desc="Processing images"):
process_image(image_path, args.model, args.output_dir)
if __name__ == '__main__':
main()