import streamlit as st import yfinance as yf import pandas as pd from prophet import Prophet import plotly.graph_objs as go import google.generativeai as genai import numpy as np # Streamlit app details st.set_page_config(page_title="TechyTrade", layout="wide") # Custom CSS st.markdown(""" """, unsafe_allow_html=True) # Sidebar with st.sidebar: st.title("📊 TechyTrade") ticker = st.text_input("Enter a stock ticker (e.g. AAPL) 🏷️", "AAPL") period = st.selectbox("Enter a time frame ⏳", ("1D", "5D", "1M", "6M", "YTD", "1Y", "5Y"), index=2) forecast_period = st.slider("Select forecast period (days) 🔮", min_value=1, max_value=365, value=30) st.write("Select Technical Indicators:") sma_checkbox = st.checkbox("Simple Moving Average (SMA)") ema_checkbox = st.checkbox("Exponential Moving Average (EMA)") rsi_checkbox = st.checkbox("Relative Strength Index (RSI)") macd_checkbox = st.checkbox("Moving Average Convergence Divergence (MACD)") bollinger_checkbox = st.checkbox("Bollinger Bands") google_api_key = st.text_input("Enter your Google API Key 🔑", type="password") button = st.button("Submit 🚀") # Load generative model @st.cache_resource def load_model(api_key): genai.configure(api_key=api_key) return genai.GenerativeModel('gemini-1.5-flash') # Function to generate reasons using the generative model def generate_reasons(fig, stock_info, price_info, biz_metrics, api_key): model = load_model(api_key) prompt = f"Based on the following stock price graph description:\n\n{fig}\n\n and the tables:\n\n{stock_info}\n\n and\n\n{price_info}\n\n and\n\n{biz_metrics}\n\n and analyze the trends and give recommendations and insights." response = model.generate_content(prompt) return response.text # Function to format large numbers def format_value(value): suffixes = ["", "K", "M", "B", "T"] suffix_index = 0 while value >= 1000 and suffix_index < len(suffixes) - 1: value /= 1000 suffix_index += 1 return f"${value:.1f}{suffixes[suffix_index]}" # Technical Indicators Functions def calculate_sma(data, window): return data.rolling(window=window).mean() def calculate_ema(data, window): return data.ewm(span=window, adjust=False).mean() def calculate_rsi(data, window): delta = data.diff() gain = (delta.where(delta > 0, 0)).rolling(window=window).mean() loss = (-delta.where(delta < 0, 0)).rolling(window=window).mean() rs = gain / loss return 100 - (100 / (1 + rs)) def calculate_macd(data, short_window=12, long_window=26, signal_window=9): short_ema = calculate_ema(data, short_window) long_ema = calculate_ema(data, long_window) macd = short_ema - long_ema signal = calculate_ema(macd, signal_window) return macd, signal def calculate_bollinger_bands(data, window): sma = calculate_sma(data, window) std = data.rolling(window=window).std() upper_band = sma + (std * 2) lower_band = sma - (std * 2) return upper_band, lower_band # If Submit button is clicked if button: if not ticker.strip(): st.error("Please provide a valid stock ticker.") elif not google_api_key.strip(): st.error("Please provide a valid Google API Key.") else: try: with st.spinner('Please wait...'): # Retrieve stock data stock = yf.Ticker(ticker) info = stock.info st.subheader(f"{ticker} - {info.get('longName', 'N/A')}") # Plot historical stock price data if period == "1D": history = stock.history(period="1d", interval="1h") elif period == "5D": history = stock.history(period="5d", interval="1d") elif period == "1M": history = stock.history(period="1mo", interval="1d") elif period == "6M": history = stock.history(period="6mo", interval="1wk") elif period == "YTD": history = stock.history(period="ytd", interval="1mo") elif period == "1Y": history = stock.history(period="1y", interval="1mo") elif period == "5Y": history = stock.history(period="5y", interval="3mo") # Create a plotly figure fig = go.Figure() fig.add_trace(go.Scatter(x=history.index, y=history['Close'], mode='lines', name='Close Price')) # Add Technical Indicators if sma_checkbox: sma = calculate_sma(history['Close'], window=20) fig.add_trace(go.Scatter(x=history.index, y=sma, mode='lines', name='SMA (20)')) if ema_checkbox: ema = calculate_ema(history['Close'], window=20) fig.add_trace(go.Scatter(x=history.index, y=ema, mode='lines', name='EMA (20)')) if rsi_checkbox: rsi = calculate_rsi(history['Close'], window=14) fig.add_trace(go.Scatter(x=history.index, y=rsi, mode='lines', name='RSI (14)', yaxis='y2')) fig.update_layout(yaxis2=dict(title='RSI', overlaying='y', side='right')) if macd_checkbox: macd, signal = calculate_macd(history['Close']) fig.add_trace(go.Scatter(x=history.index, y=macd, mode='lines', name='MACD')) fig.add_trace(go.Scatter(x=history.index, y=signal, mode='lines', name='Signal Line')) if bollinger_checkbox: upper_band, lower_band = calculate_bollinger_bands(history['Close'], window=20) fig.add_trace(go.Scatter(x=history.index, y=upper_band, mode='lines', name='Upper Band')) fig.add_trace(go.Scatter(x=history.index, y=lower_band, mode='lines', name='Lower Band')) fig.update_layout( title=f"Historical Stock Prices for {ticker}", xaxis_title="Date", yaxis_title="Close Price", hovermode="x unified" ) st.plotly_chart(fig, use_container_width=True) col1, col2, col3 = st.columns(3) # Display stock information as a dataframe country = info.get('country', 'N/A') sector = info.get('sector', 'N/A') industry = info.get('industry', 'N/A') market_cap = info.get('marketCap', 'N/A') ent_value = info.get('enterpriseValue', 'N/A') employees = info.get('fullTimeEmployees', 'N/A') stock_info = [ ("Stock Info", "Value"), ("Country ", country), ("Sector ", sector), ("Industry ", industry), ("Market Cap ", format_value(market_cap)), ("Enterprise Value ", format_value(ent_value)), ("Employees ", employees) ] df = pd.DataFrame(stock_info[1:], columns=stock_info[0]) col1.dataframe(df, width=400, hide_index=True) # Display price information as a dataframe current_price = info.get('currentPrice', 'N/A') prev_close = info.get('previousClose', 'N/A') day_high = info.get('dayHigh', 'N/A') day_low = info.get('dayLow', 'N/A') ft_week_high = info.get('fiftyTwoWeekHigh', 'N/A') ft_week_low = info.get('fiftyTwoWeekLow', 'N/A') price_info = [ ("Price Info", "Value"), ("Current Price ", f"${current_price:.2f}"), ("Previous Close ", f"${prev_close:.2f}"), ("Day High ", f"${day_high:.2f}"), ("Day Low ", f"${day_low:.2f}"), ("52 Week High ", f"${ft_week_high:.2f}"), ("52 Week Low ", f"${ft_week_low:.2f}") ] df = pd.DataFrame(price_info[1:], columns=price_info[0]) col2.dataframe(df, width=400, hide_index=True) # Display business metrics as a dataframe forward_eps = info.get('forwardEps', 'N/A') forward_pe = info.get('forwardPE', 'N/A') peg_ratio = info.get('pegRatio', 'N/A') dividend_rate = info.get('dividendRate', 'N/A') dividend_yield = info.get('dividendYield', 'N/A') recommendation = info.get('recommendationKey', 'N/A') biz_metrics = [ ("Business Metrics", "Value"), ("EPS (FWD) ", f"{forward_eps:.2f}"), ("P/E (FWD) ", f"{forward_pe:.2f}"), ("PEG Ratio ", f"{peg_ratio:.2f}"), ("Div Rate (FWD) ", f"${dividend_rate:.2f}"), ("Div Yield (FWD) ", f"{dividend_yield * 100:.2f}%"), ("Recommendation ", recommendation.capitalize()) ] df = pd.DataFrame(biz_metrics[1:], columns=biz_metrics[0]) col3.dataframe(df, width=400, hide_index=True) # Forecasting st.subheader("Stock Price Forecast 🔮") df_forecast = history.reset_index()[['Date', 'Close']] df_forecast['Date'] = pd.to_datetime(df_forecast['Date']).dt.tz_localize(None) # Remove timezone information df_forecast.columns = ['ds', 'y'] m = Prophet(daily_seasonality=True) m.fit(df_forecast) future = m.make_future_dataframe(periods=forecast_period) forecast = m.predict(future) fig2 = go.Figure() fig2.add_trace(go.Scatter(x=forecast['ds'], y=forecast['yhat'], mode='lines', name='Forecast')) fig2.add_trace(go.Scatter(x=forecast['ds'], y=forecast['yhat_upper'], mode='lines', name='Upper Confidence Interval', line=dict(dash='dash'))) fig2.add_trace(go.Scatter(x=forecast['ds'], y=forecast['yhat_lower'], mode='lines', name='Lower Confidence Interval', line=dict(dash='dash'))) fig2.update_layout( title=f"Stock Price Forecast for {ticker}", xaxis_title="Date", yaxis_title="Predicted Close Price", hovermode="x unified" ) st.plotly_chart(fig2, use_container_width=True) # Generate reasons based on forecast graph_description = f"The stock price forecast graph for {ticker} shows the predicted close prices along with the upper and lower confidence intervals for the next {forecast_period} days." reasons = generate_reasons(fig, stock_info, price_info, biz_metrics, google_api_key) st.subheader("Investment Analysis") st.write(reasons) except Exception as e: st.exception(f"An error occurred: {e}")