Spaces:
Runtime error
Runtime error
File size: 10,740 Bytes
5000866 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import streamlit as st
import google.generativeai as genai
import googlemaps
from datetime import datetime
from PIL import Image as PILImage
import folium
from streamlit_folium import folium_static
import os
from dotenv import load_dotenv
from streamlit_option_menu import option_menu
import plotly.graph_objs as go
import re
# Load environment variables
load_dotenv()
# Initialize APIs
MAP_API_KEY = os.getenv('MAP_API_KEY')
GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')
# Configure the page
st.set_page_config(
page_title="TerraPulse",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for typography, headings, and styling
st.markdown(
"""
<style>
body {
background-color: #f5f7fa;
font-family: 'Poppins', sans-serif;
}
h1, h2, h3 {
color: #008080;
font-weight: 700;
}
h1 {
font-size: 3em;
text-align: center;
margin-bottom: 20px;
}
h2 {
font-size: 2.2em;
margin-top: 20px;
}
h3 {
font-size: 1.8em;
}
.stApp {
padding: 20px;
border-radius: 10px;
background-color: #f5f7fa;
}
.stButton>button {
background-color: #008080;
color: white;
border: none;
padding: 12px 24px;
font-size: 18px;
border-radius: 10px;
transition: background-color 0.3s;
}
.stButton>button:hover {
background-color: #006666;
}
.stTextInput>div>div>input {
border-radius: 10px;
border: 1px solid #ccc;
padding: 12px;
font-size: 18px;
}
.stSidebar > div {
background-color: rgba(255, 255, 255, 0.95);
padding: 20px;
border-radius: 10px;
}
.chat-message {
font-size: 18px;
font-weight: bold;
color: #008080;
}
</style>
""",
unsafe_allow_html=True
)
# Sidebar with option menu
selected_option = option_menu(
menu_title="π TerraPulse",
options=["Home", "Waste-wise", "EcoRoute: Sustainable Travel Planner"],
icons=["house", "recycle", "globe"],
menu_icon="cast",
default_index=0,
orientation="horizontal",
styles={
"container": {"padding": "5!important", "background-color": "#e0f7fa"},
"icon": {"color": "#006666", "font-size": "25px"},
"nav-link": {"font-size": "20px", "text-align": "center", "margin":"0px", "--hover-color": "#e0f7fa"},
"nav-link-selected": {"background-color": "#008080"},
}
)
# Home page
if selected_option == "Home":
st.title("π Welcome to TerraPulse")
st.markdown(
"""
**TerraPulse** is your go-to application for a sustainable future. π±
Whether you're looking to classify waste for proper disposal or planning an eco-friendly route for your next trip, TerraPulse has got you covered.
**Features:**
- **β»οΈ Waste-wise:** Upload images of trash items, and TerraPulse will classify them into recyclables, compostables, hazardous materials, and general waste.
- **π EcoRoute:** Plan your travel with the environment in mind. Get the most sustainable routes, transportation suggestions, and carbon footprint estimates.
**Let's work together for a cleaner and greener planet!** ππ
"""
)
# Load Gemini Pro Vision model
@st.cache_resource
def load_model():
if not GOOGLE_API_KEY:
st.error("Google API Key not found in .env file.")
st.stop()
genai.configure(api_key=GOOGLE_API_KEY)
return genai.GenerativeModel('gemini-1.5-flash')
# Analyze image function
def analyze_image(image, prompt):
model = load_model()
try:
response = model.generate_content([prompt, image])
return response.text
except Exception as e:
st.error(f"An error occurred during analysis: {str(e)}")
return None
def parse_modes_and_footprints(response_text):
# Regular expression to match the rows of the table
row_pattern = re.compile(r'\| (.+?) \| ([\d.]+) \|')
# Find all rows in the table
matches = row_pattern.findall(response_text)
modes = []
carbon_footprints = []
for match in matches:
mode = match[0].strip()
footprint = float(match[1].strip())
modes.append(mode)
carbon_footprints.append(footprint)
if not modes or not carbon_footprints:
raise ValueError("No valid data found in the response text")
return modes, carbon_footprints
# Waste-wise section
if selected_option == "Waste-wise":
st.title("β»οΈ Waste-wise")
st.subheader("π€ Upload Image")
uploaded_files = st.file_uploader("Choose trash images...", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
prompt = "Analyze the image of trash items. Classify the waste into categories such as recyclables, compostables, hazardous materials, and general waste. Based on the classification, guide the user on which specific color dustbin (e.g., recycling, compost, hazardous, or landfill) to dispose of the items."
if uploaded_files:
analyze_button = st.button("π Analyze Image")
for uploaded_file in uploaded_files:
col1, col2 = st.columns(2)
with col1:
st.subheader("πΌοΈ Uploaded Image")
image = PILImage.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
with col2:
st.subheader("π§ Image Analysis")
if analyze_button:
with st.spinner("Analyzing the image..."):
analysis = analyze_image(image, prompt)
if analysis:
st.markdown(analysis)
else:
st.info("Click 'Analyze Image' to start the analysis.")
# EcoRoute section
if selected_option == "EcoRoute: Sustainable Travel Planner":
st.title("π EcoRoute: Sustainable Travel Planner")
gmaps = googlemaps.Client(key=MAP_API_KEY)
model = load_model()
# User inputs
start_location = st.text_input("Enter your start location")
destination_location = st.text_input("Enter your destination location")
no_of_people = st.selectbox(
"Choose the number of people",
["1", "2", "3-6", "6-10", "10+"]
)
def calculate_trees(carbon_footprint):
"""Calculate the number of trees required to offset the carbon footprint."""
carbon_per_tree = 0.02177 # Metric tons of COβ absorbed per year by one tree
return carbon_footprint / carbon_per_tree
if st.button("Find Eco-Friendly Route"):
if start_location and destination_location:
# Geocoding the start and end locations
geocode_start = gmaps.geocode(start_location)
geocode_end = gmaps.geocode(destination_location)
if geocode_start and geocode_end:
start_coords = geocode_start[0]['geometry']['location']
end_coords = geocode_end[0]['geometry']['location']
# Prompt Google Gemini API to suggest an eco-friendly mode of transport
prompt = f"""You are an eco-friendly mode of transport suggestor. Your job is to provide me with the best routes in bullet points in a comprehensive manner. Suggest the most eco-friendly mode of transport between {start_location} and {destination_location}. Here is the number of people traveling: {no_of_people}. Consider all the above parameters to provide the result in the below format:
Distance: [distance]
Mode 1: Train
- Time: 2h 30m
- Feasibility: High
- Route: Detailed route description
- Carbon footprint (unit): 30.0
Mode 2: Bus
- Time: 3h 00m
- Feasibility: Medium
- Route: Detailed route description
- Carbon footprint (unit): 50.0
Mode 3: Car
- Time: 1h 15m
- Feasibility: High
- Route: Detailed route description
- Carbon footprint (unit): 120.0
Use this exact format. carbon footprint output should only be a single number in float format, nothing else. Generate a table of the different modes of transport vs their carbon footprint.
Similarly, using your own knowledge, provide eco-friendly routes and the most eco-friendly option along with the estimated carbon footprint.
"""
response = model.generate_content([prompt])
eco_friendly_modes = response.text.strip()
st.write(f"**Suggested Eco-Friendly Modes:**\n{eco_friendly_modes}")
try:
modes, carbon_footprints = parse_modes_and_footprints(eco_friendly_modes)
# Plotting the pie chart using Plotly
if modes and carbon_footprints:
fig = go.Figure(data=[go.Pie(labels=modes, values=carbon_footprints)])
fig.update_traces(hoverinfo='label+percent', textinfo='value', textfont_size=20)
fig.update_layout(title="Carbon Footprint Distribution by Mode of Transport", margin=dict(l=0, r=0, t=40, b=0))
# Adjust layout to ensure map and pie chart do not overlap
col1, col2 = st.columns([2, 1])
with col1:
# Displaying the map
st.subheader("EcoRoute Map View")
# Create a map centered at the midpoint
midpoint = [(start_coords['lat'] + end_coords['lat']) / 2, (start_coords['lng'] + end_coords['lng']) / 2]
m = folium.Map(location=midpoint, zoom_start=8)
folium.Marker([start_coords['lat'], start_coords['lng']], popup=start_location, icon=folium.Icon(color='green')).add_to(m)
folium.Marker([end_coords['lat'], end_coords['lng']], popup=destination_location, icon=folium.Icon(color='red')).add_to(m)
# Draw a line between the start and end locations
folium.PolyLine(locations=[(start_coords['lat'], start_coords['lng']), (end_coords['lat'], end_coords['lng'])], color='blue').add_to(m)
folium_static(m)
with col2:
st.plotly_chart(fig, use_container_width=True)
except ValueError as e:
st.error(f"Error parsing the response: {str(e)}")
else:
st.error("Could not geocode one or both locations. Please check the input.")
else:
st.error("Please enter both the start and destination locations.") |