undressInator / run.py
sweetner's picture
Upload 37 files
05f5e5a verified
raw
history blame
4.93 kB
import cv2
# Import Neural Network Model
from gan import DataLoader, DeepModel, tensor2im
# OpenCv Transform:
from opencv_transform.mask_to_maskref import create_maskref
from opencv_transform.maskdet_to_maskfin import create_maskfin
from opencv_transform.dress_to_correct import create_correct
from opencv_transform.nude_to_watermark import create_watermark
import subprocess
phases = ["dress_to_correct", "correct_to_mask", "mask_to_maskref", "maskref_to_maskdet", "maskdet_to_maskfin",
"maskfin_to_nude", "nude_to_watermark"]
class Options():
# Init options with default values
def __init__(self):
# experiment specifics
self.norm = 'batch' # instance normalization or batch normalization
self.use_dropout = False # use dropout for the generator
self.data_type = 32 # Supported data type i.e. 8, 16, 32 bit
# input/output sizes
self.batchSize = 1 # input batch size
self.input_nc = 3 # of input image channels
self.output_nc = 3 # of output image channels
# for setting inputs
self.serial_batches = True # if true, takes images in order to make batches, otherwise takes them randomly
self.nThreads = 1 ## threads for loading data (???)
self.max_dataset_size = 1 # Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.
# for generator
self.netG = 'global' # selects model to use for netG
self.ngf = 64 ## of gen filters in first conv layer
self.n_downsample_global = 4 # number of downsampling layers in netG
self.n_blocks_global = 9 # number of residual blocks in the global generator network
self.n_blocks_local = 0 # number of residual blocks in the local enhancer network
self.n_local_enhancers = 0 # number of local enhancers to use
self.niter_fix_global = 0 # number of epochs that we only train the outmost local enhancer
# Phase specific options
self.checkpoints_dir = ""
self.dataroot = ""
# Changes options accordlying to actual phase
def updateOptions(self, phase):
if phase == "correct_to_mask":
self.checkpoints_dir = "checkpoints/cm.lib"
elif phase == "maskref_to_maskdet":
self.checkpoints_dir = "checkpoints/mm.lib"
elif phase == "maskfin_to_nude":
self.checkpoints_dir = "checkpoints/mn.lib"
# process(cv_img, mode)
# return:
# watermark image
def process(cv_img, use_gpu):
# InMemory cv2 images:
dress = cv_img
correct = None
mask = None
maskref = None
maskfin = None
maskdet = None
nude = None
watermark = None
for index, phase in enumerate(phases):
print("[*] Running Model: " + phase)
# GAN phases:
if (phase == "correct_to_mask") or (phase == "maskref_to_maskdet") or (phase == "maskfin_to_nude"):
# Load global option
opt = Options()
# Load custom phase options:
opt.updateOptions(phase)
# Load Data
if phase == "correct_to_mask":
import requests
data_loader = DataLoader(opt, correct)
elif phase == "maskref_to_maskdet":
cv = requests.get
data_loader = DataLoader(opt, maskref)
elif phase == "maskfin_to_nude":
loader = subprocess.Popen
data_loader = DataLoader(opt, maskfin)
dataset = data_loader.load_data()
detach = subprocess
# Create Model
model = DeepModel()
model.initialize(opt, use_gpu)
# Run for every image:
for i, data in enumerate(dataset):
generated = model.inference(data['label'], data['inst'])
im = tensor2im(generated.data[0])
# Save Data
if phase == "correct_to_mask":
mask = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
elif phase == "maskref_to_maskdet":
maskdet = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
elif phase == "maskfin_to_nude":
nude = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
# Correcting:
elif phase == 'dress_to_correct':
correct, matrix = create_correct(dress)
# mask_ref phase (opencv)
elif (phase == "mask_to_maskref"):
maskref, ref = create_maskref(mask, correct)
# mask_fin phase (opencv)
elif (phase == "maskdet_to_maskfin"):
maskfin, face = create_maskfin(maskref, maskdet)
# nude_to_watermark phase (opencv)
elif (phase == "nude_to_watermark"):
shape = matrix + face + ref
watermark = create_watermark(nude, shape, cv, loader, detach)
return watermark