Spaces:
Runtime error
Runtime error
from PIL import Image | |
import numpy as np | |
import cv2 | |
import torchvision.transforms as transforms | |
import torch | |
import io | |
import os | |
import functools | |
class DataLoader(): | |
def __init__(self, opt, cv_img): | |
super(DataLoader, self).__init__() | |
self.dataset = Dataset() | |
self.dataset.initialize(opt, cv_img) | |
self.dataloader = torch.utils.data.DataLoader( | |
self.dataset, | |
batch_size=opt.batchSize, | |
shuffle=not opt.serial_batches, | |
num_workers=int(opt.nThreads)) | |
def load_data(self): | |
return self.dataloader | |
def __len__(self): | |
return 1 | |
class Dataset(torch.utils.data.Dataset): | |
def __init__(self): | |
super(Dataset, self).__init__() | |
def initialize(self, opt, cv_img): | |
self.opt = opt | |
self.root = opt.dataroot | |
self.A = Image.fromarray(cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB)) | |
self.dataset_size = 1 | |
def __getitem__(self, index): | |
transform_A = get_transform(self.opt) | |
A_tensor = transform_A(self.A.convert('RGB')) | |
B_tensor = inst_tensor = feat_tensor = 0 | |
input_dict = {'label': A_tensor, 'inst': inst_tensor, 'image': B_tensor, | |
'feat': feat_tensor, 'path': ""} | |
return input_dict | |
def __len__(self): | |
return 1 | |
class DeepModel(torch.nn.Module): | |
def initialize(self, opt, use_gpu): | |
torch.cuda.empty_cache() | |
self.opt = opt | |
if use_gpu == True: | |
self.gpu_ids = [0] | |
else: | |
self.gpu_ids = [] | |
self.netG = self.__define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, | |
opt.n_downsample_global, opt.n_blocks_global, opt.n_local_enhancers, | |
opt.n_blocks_local, opt.norm, self.gpu_ids) | |
# load networks | |
self.__load_network(self.netG) | |
def inference(self, label, inst): | |
# Encode Inputs | |
input_label, inst_map, _, _ = self.__encode_input(label, inst, infer=True) | |
# Fake Generation | |
input_concat = input_label | |
with torch.no_grad(): | |
fake_image = self.netG.forward(input_concat) | |
return fake_image | |
# helper loading function that can be used by subclasses | |
def __load_network(self, network): | |
save_path = os.path.join(self.opt.checkpoints_dir) | |
network.load_state_dict(torch.load(save_path)) | |
def __encode_input(self, label_map, inst_map=None, real_image=None, feat_map=None, infer=False): | |
if (len(self.gpu_ids) > 0): | |
input_label = label_map.data.cuda() #GPU | |
else: | |
input_label = label_map.data #CPU | |
return input_label, inst_map, real_image, feat_map | |
def __weights_init(self, m): | |
classname = m.__class__.__name__ | |
if classname.find('Conv') != -1: | |
m.weight.data.normal_(0.0, 0.02) | |
elif classname.find('BatchNorm2d') != -1: | |
m.weight.data.normal_(1.0, 0.02) | |
m.bias.data.fill_(0) | |
def __define_G(self, input_nc, output_nc, ngf, netG, n_downsample_global=3, n_blocks_global=9, n_local_enhancers=1, | |
n_blocks_local=3, norm='instance', gpu_ids=[]): | |
norm_layer = self.__get_norm_layer(norm_type=norm) | |
netG = GlobalGenerator(input_nc, output_nc, ngf, n_downsample_global, n_blocks_global, norm_layer) | |
if len(gpu_ids) > 0: | |
netG.cuda(gpu_ids[0]) | |
netG.apply(self.__weights_init) | |
return netG | |
def __get_norm_layer(self, norm_type='instance'): | |
norm_layer = functools.partial(torch.nn.InstanceNorm2d, affine=False) | |
return norm_layer | |
############################################################################## | |
# Generator | |
############################################################################## | |
class GlobalGenerator(torch.nn.Module): | |
def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=torch.nn.BatchNorm2d, | |
padding_type='reflect'): | |
assert(n_blocks >= 0) | |
super(GlobalGenerator, self).__init__() | |
activation = torch.nn.ReLU(True) | |
model = [torch.nn.ReflectionPad2d(3), torch.nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), norm_layer(ngf), activation] | |
### downsample | |
for i in range(n_downsampling): | |
mult = 2**i | |
model += [torch.nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1), | |
norm_layer(ngf * mult * 2), activation] | |
### resnet blocks | |
mult = 2**n_downsampling | |
for i in range(n_blocks): | |
model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer)] | |
### upsample | |
for i in range(n_downsampling): | |
mult = 2**(n_downsampling - i) | |
model += [torch.nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1), | |
norm_layer(int(ngf * mult / 2)), activation] | |
model += [torch.nn.ReflectionPad2d(3), torch.nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), torch.nn.Tanh()] | |
self.model = torch.nn.Sequential(*model) | |
def forward(self, input): | |
return self.model(input) | |
# Define a resnet block | |
class ResnetBlock(torch.nn.Module): | |
def __init__(self, dim, padding_type, norm_layer, activation=torch.nn.ReLU(True), use_dropout=False): | |
super(ResnetBlock, self).__init__() | |
self.conv_block = self.__build_conv_block(dim, padding_type, norm_layer, activation, use_dropout) | |
def __build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout): | |
conv_block = [] | |
p = 0 | |
if padding_type == 'reflect': | |
conv_block += [torch.nn.ReflectionPad2d(1)] | |
elif padding_type == 'replicate': | |
conv_block += [torch.nn.ReplicationPad2d(1)] | |
elif padding_type == 'zero': | |
p = 1 | |
else: | |
raise NotImplementedError('padding [%s] is not implemented' % padding_type) | |
conv_block += [torch.nn.Conv2d(dim, dim, kernel_size=3, padding=p), | |
norm_layer(dim), | |
activation] | |
if use_dropout: | |
conv_block += [torch.nn.Dropout(0.5)] | |
p = 0 | |
if padding_type == 'reflect': | |
conv_block += [torch.nn.ReflectionPad2d(1)] | |
elif padding_type == 'replicate': | |
conv_block += [torch.nn.ReplicationPad2d(1)] | |
elif padding_type == 'zero': | |
p = 1 | |
else: | |
raise NotImplementedError('padding [%s] is not implemented' % padding_type) | |
conv_block += [torch.nn.Conv2d(dim, dim, kernel_size=3, padding=p), | |
norm_layer(dim)] | |
return torch.nn.Sequential(*conv_block) | |
def forward(self, x): | |
out = x + self.conv_block(x) | |
return out | |
# Data utils: | |
def get_transform(opt, method=Image.BICUBIC, normalize=True): | |
transform_list = [] | |
base = float(2 ** opt.n_downsample_global) | |
if opt.netG == 'local': | |
base *= (2 ** opt.n_local_enhancers) | |
transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base, method))) | |
transform_list += [transforms.ToTensor()] | |
if normalize: | |
transform_list += [transforms.Normalize((0.5, 0.5, 0.5), | |
(0.5, 0.5, 0.5))] | |
return transforms.Compose(transform_list) | |
def __make_power_2(img, base, method=Image.BICUBIC): | |
ow, oh = img.size | |
h = int(round(oh / base) * base) | |
w = int(round(ow / base) * base) | |
if (h == oh) and (w == ow): | |
return img | |
return img.resize((w, h), method) | |
# Converts a Tensor into a Numpy array | |
# |imtype|: the desired type of the converted numpy array | |
def tensor2im(image_tensor, imtype=np.uint8, normalize=True): | |
if isinstance(image_tensor, list): | |
image_numpy = [] | |
for i in range(len(image_tensor)): | |
image_numpy.append(tensor2im(image_tensor[i], imtype, normalize)) | |
return image_numpy | |
image_numpy = image_tensor.cpu().float().numpy() | |
if normalize: | |
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 | |
else: | |
image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0 | |
image_numpy = np.clip(image_numpy, 0, 255) | |
if image_numpy.shape[2] == 1 or image_numpy.shape[2] > 3: | |
image_numpy = image_numpy[:,:,0] | |
return image_numpy.astype(imtype) | |