from PIL import Image import numpy as np import cv2 import torchvision.transforms as transforms import torch import io import os import functools class DataLoader(): def __init__(self, opt, cv_img): super(DataLoader, self).__init__() self.dataset = Dataset() self.dataset.initialize(opt, cv_img) self.dataloader = torch.utils.data.DataLoader( self.dataset, batch_size=opt.batchSize, shuffle=not opt.serial_batches, num_workers=int(opt.nThreads)) def load_data(self): return self.dataloader def __len__(self): return 1 class Dataset(torch.utils.data.Dataset): def __init__(self): super(Dataset, self).__init__() def initialize(self, opt, cv_img): self.opt = opt self.root = opt.dataroot self.A = Image.fromarray(cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB)) self.dataset_size = 1 def __getitem__(self, index): transform_A = get_transform(self.opt) A_tensor = transform_A(self.A.convert('RGB')) B_tensor = inst_tensor = feat_tensor = 0 input_dict = {'label': A_tensor, 'inst': inst_tensor, 'image': B_tensor, 'feat': feat_tensor, 'path': ""} return input_dict def __len__(self): return 1 class DeepModel(torch.nn.Module): def initialize(self, opt, use_gpu): torch.cuda.empty_cache() self.opt = opt if use_gpu == True: self.gpu_ids = [0] else: self.gpu_ids = [] self.netG = self.__define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.n_downsample_global, opt.n_blocks_global, opt.n_local_enhancers, opt.n_blocks_local, opt.norm, self.gpu_ids) # load networks self.__load_network(self.netG) def inference(self, label, inst): # Encode Inputs input_label, inst_map, _, _ = self.__encode_input(label, inst, infer=True) # Fake Generation input_concat = input_label with torch.no_grad(): fake_image = self.netG.forward(input_concat) return fake_image # helper loading function that can be used by subclasses def __load_network(self, network): save_path = os.path.join(self.opt.checkpoints_dir) network.load_state_dict(torch.load(save_path)) def __encode_input(self, label_map, inst_map=None, real_image=None, feat_map=None, infer=False): if (len(self.gpu_ids) > 0): input_label = label_map.data.cuda() #GPU else: input_label = label_map.data #CPU return input_label, inst_map, real_image, feat_map def __weights_init(self, m): classname = m.__class__.__name__ if classname.find('Conv') != -1: m.weight.data.normal_(0.0, 0.02) elif classname.find('BatchNorm2d') != -1: m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) def __define_G(self, input_nc, output_nc, ngf, netG, n_downsample_global=3, n_blocks_global=9, n_local_enhancers=1, n_blocks_local=3, norm='instance', gpu_ids=[]): norm_layer = self.__get_norm_layer(norm_type=norm) netG = GlobalGenerator(input_nc, output_nc, ngf, n_downsample_global, n_blocks_global, norm_layer) if len(gpu_ids) > 0: netG.cuda(gpu_ids[0]) netG.apply(self.__weights_init) return netG def __get_norm_layer(self, norm_type='instance'): norm_layer = functools.partial(torch.nn.InstanceNorm2d, affine=False) return norm_layer ############################################################################## # Generator ############################################################################## class GlobalGenerator(torch.nn.Module): def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=torch.nn.BatchNorm2d, padding_type='reflect'): assert(n_blocks >= 0) super(GlobalGenerator, self).__init__() activation = torch.nn.ReLU(True) model = [torch.nn.ReflectionPad2d(3), torch.nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), norm_layer(ngf), activation] ### downsample for i in range(n_downsampling): mult = 2**i model += [torch.nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1), norm_layer(ngf * mult * 2), activation] ### resnet blocks mult = 2**n_downsampling for i in range(n_blocks): model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer)] ### upsample for i in range(n_downsampling): mult = 2**(n_downsampling - i) model += [torch.nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1), norm_layer(int(ngf * mult / 2)), activation] model += [torch.nn.ReflectionPad2d(3), torch.nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), torch.nn.Tanh()] self.model = torch.nn.Sequential(*model) def forward(self, input): return self.model(input) # Define a resnet block class ResnetBlock(torch.nn.Module): def __init__(self, dim, padding_type, norm_layer, activation=torch.nn.ReLU(True), use_dropout=False): super(ResnetBlock, self).__init__() self.conv_block = self.__build_conv_block(dim, padding_type, norm_layer, activation, use_dropout) def __build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout): conv_block = [] p = 0 if padding_type == 'reflect': conv_block += [torch.nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [torch.nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [torch.nn.Conv2d(dim, dim, kernel_size=3, padding=p), norm_layer(dim), activation] if use_dropout: conv_block += [torch.nn.Dropout(0.5)] p = 0 if padding_type == 'reflect': conv_block += [torch.nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [torch.nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [torch.nn.Conv2d(dim, dim, kernel_size=3, padding=p), norm_layer(dim)] return torch.nn.Sequential(*conv_block) def forward(self, x): out = x + self.conv_block(x) return out # Data utils: def get_transform(opt, method=Image.BICUBIC, normalize=True): transform_list = [] base = float(2 ** opt.n_downsample_global) if opt.netG == 'local': base *= (2 ** opt.n_local_enhancers) transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base, method))) transform_list += [transforms.ToTensor()] if normalize: transform_list += [transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] return transforms.Compose(transform_list) def __make_power_2(img, base, method=Image.BICUBIC): ow, oh = img.size h = int(round(oh / base) * base) w = int(round(ow / base) * base) if (h == oh) and (w == ow): return img return img.resize((w, h), method) # Converts a Tensor into a Numpy array # |imtype|: the desired type of the converted numpy array def tensor2im(image_tensor, imtype=np.uint8, normalize=True): if isinstance(image_tensor, list): image_numpy = [] for i in range(len(image_tensor)): image_numpy.append(tensor2im(image_tensor[i], imtype, normalize)) return image_numpy image_numpy = image_tensor.cpu().float().numpy() if normalize: image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 else: image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0 image_numpy = np.clip(image_numpy, 0, 255) if image_numpy.shape[2] == 1 or image_numpy.shape[2] > 3: image_numpy = image_numpy[:,:,0] return image_numpy.astype(imtype)