import gradio as gr from langchain_core.vectorstores import InMemoryVectorStore from langchain.chains import RetrievalQA from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_groq import ChatGroq from langchain_core.prompts import ChatPromptTemplate from langchain.chains import create_retrieval_chain from langchain.chains.combine_documents import create_stuff_documents_chain """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ model_name = "llama-3.3-70b-versatile" embeddings = HuggingFaceEmbeddings( model_name = "pkshatech/GLuCoSE-base-ja" ) vector_store = InMemoryVectorStore.load( "sop_vector_store", embeddings ) retriever = vector_store.as_retriever(search_kwargs={"k": 4}) def fetch_response(groq_api_key, user_input): chat = ChatGroq( api_key = groq_api_key, model_name = model_name ) system_prompt = ( "あなたは便利なアシスタントです。" "マニュアルの内容から回答してください。" "\n\n" "{context}" ) prompt = ChatPromptTemplate.from_messages( [ ("system", system_prompt), ("human", "{input}"), ] ) # ドキュメントのリストを渡せるchainを作成 question_answer_chain = create_stuff_documents_chain(chat, prompt) # RetrieverとQAチェーンを組み合わせてRAGチェーンを作成 rag_chain = create_retrieval_chain(retriever, question_answer_chain) response = rag_chain.invoke({"input": user_input}) return [response["answer"], response["context"][0], response["context"][1]] """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ with gr.Blocks() as demo: gr.Markdown('''# SOP事業マスター \n SOP作成研究に関して、公募要領やQAを参考にRAGを使って回答します。 ''') with gr.Row(): api_key = gr.Textbox(label="Groq API key") with gr.Row(): with gr.Column(): user_input = gr.Textbox(label="User Input") submit = gr.Button("Submit") answer = gr.Textbox(label="Answer") with gr.Row(): with gr.Column(): source1 = gr.Textbox(label="回答ソース1") with gr.Column(): source2 = gr.Textbox(label="回答ソース2") submit.click(fetch_response, inputs=[api_key, user_input], outputs=[answer, source1, source2]) if __name__ == "__main__": demo.launch()