Spaces:
Running
Running
backup
Browse files
app.py
ADDED
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import base64
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
import shutil
|
6 |
+
import uuid
|
7 |
+
import glob
|
8 |
+
from huggingface_hub import CommitScheduler, HfApi, snapshot_download
|
9 |
+
from pathlib import Path
|
10 |
+
import git
|
11 |
+
from datasets import Dataset, Features, Value, Sequence, Image as ImageFeature
|
12 |
+
import threading
|
13 |
+
import time
|
14 |
+
from utils import process_and_push_dataset
|
15 |
+
from datasets import load_dataset
|
16 |
+
|
17 |
+
api = HfApi(token=os.environ["HF_TOKEN"])
|
18 |
+
|
19 |
+
VALID_DATASET = load_dataset("taesiri/IERv2-Subset", split="train")
|
20 |
+
|
21 |
+
VALID_DATASET_POST_IDS = (
|
22 |
+
load_dataset("taesiri/IERv2-Subset", split="train", columns=["post_id"])
|
23 |
+
.to_pandas()["post_id"]
|
24 |
+
.tolist()
|
25 |
+
)
|
26 |
+
|
27 |
+
POST_ID_TO_ID_MAP = {post_id: idx for idx, post_id in enumerate(VALID_DATASET_POST_IDS)}
|
28 |
+
|
29 |
+
DATASET_REPO = "taesiri/AIImageEditingResults_Intemediate"
|
30 |
+
FINAL_DATASET_REPO = "taesiri/AIImageEditingResults"
|
31 |
+
|
32 |
+
|
33 |
+
# Download existing data from hub
|
34 |
+
def sync_with_hub():
|
35 |
+
"""
|
36 |
+
Synchronize local data with the hub by cloning the dataset repo
|
37 |
+
"""
|
38 |
+
print("Starting sync with hub...")
|
39 |
+
data_dir = Path("./data")
|
40 |
+
if data_dir.exists():
|
41 |
+
# Backup existing data
|
42 |
+
backup_dir = Path("./data_backup")
|
43 |
+
if backup_dir.exists():
|
44 |
+
shutil.rmtree(backup_dir)
|
45 |
+
shutil.copytree(data_dir, backup_dir)
|
46 |
+
|
47 |
+
# Clone/pull latest data from hub
|
48 |
+
repo_url = f"https://huggingface.co/datasets/{DATASET_REPO}"
|
49 |
+
hub_data_dir = Path("hub_data")
|
50 |
+
|
51 |
+
if hub_data_dir.exists():
|
52 |
+
# If repo exists, do a git pull
|
53 |
+
print("Pulling latest changes...")
|
54 |
+
repo = git.Repo(hub_data_dir)
|
55 |
+
origin = repo.remotes.origin
|
56 |
+
origin.pull()
|
57 |
+
else:
|
58 |
+
# Clone the repo
|
59 |
+
print("Cloning repository...")
|
60 |
+
git.Repo.clone_from(repo_url, hub_data_dir)
|
61 |
+
|
62 |
+
# Merge hub data with local data
|
63 |
+
hub_data_source = hub_data_dir / "data"
|
64 |
+
if hub_data_source.exists():
|
65 |
+
# Create data dir if it doesn't exist
|
66 |
+
data_dir.mkdir(exist_ok=True)
|
67 |
+
|
68 |
+
# Copy files from hub
|
69 |
+
for item in hub_data_source.glob("*"):
|
70 |
+
if item.is_dir():
|
71 |
+
dest = data_dir / item.name
|
72 |
+
if not dest.exists(): # Only copy if doesn't exist locally
|
73 |
+
shutil.copytree(item, dest)
|
74 |
+
|
75 |
+
# Clean up cloned repo
|
76 |
+
if hub_data_dir.exists():
|
77 |
+
shutil.rmtree(hub_data_dir)
|
78 |
+
print("Finished syncing with hub!")
|
79 |
+
|
80 |
+
|
81 |
+
scheduler = CommitScheduler(
|
82 |
+
repo_id=DATASET_REPO,
|
83 |
+
repo_type="dataset",
|
84 |
+
folder_path="./data",
|
85 |
+
path_in_repo="data",
|
86 |
+
every=1,
|
87 |
+
)
|
88 |
+
|
89 |
+
|
90 |
+
def load_question_data(question_id):
|
91 |
+
"""
|
92 |
+
Load a specific question's data
|
93 |
+
Returns a tuple of all form fields
|
94 |
+
"""
|
95 |
+
if not question_id:
|
96 |
+
return [None] * 11 # Reduced number of fields
|
97 |
+
|
98 |
+
# Extract the ID part before the colon from the dropdown selection
|
99 |
+
question_id = (
|
100 |
+
question_id.split(":")[0].strip() if ":" in question_id else question_id
|
101 |
+
)
|
102 |
+
|
103 |
+
json_path = os.path.join("./data", question_id, "question.json")
|
104 |
+
if not os.path.exists(json_path):
|
105 |
+
print(f"Question file not found: {json_path}")
|
106 |
+
return [None] * 11
|
107 |
+
|
108 |
+
try:
|
109 |
+
with open(json_path, "r", encoding="utf-8") as f:
|
110 |
+
data = json.loads(f.read().strip())
|
111 |
+
|
112 |
+
# Load images
|
113 |
+
def load_image(image_path):
|
114 |
+
if not image_path:
|
115 |
+
return None
|
116 |
+
full_path = os.path.join(
|
117 |
+
"./data", question_id, os.path.basename(image_path)
|
118 |
+
)
|
119 |
+
return full_path if os.path.exists(full_path) else None
|
120 |
+
|
121 |
+
question_images = data.get("question_images", [])
|
122 |
+
rationale_images = data.get("rationale_images", [])
|
123 |
+
|
124 |
+
return [
|
125 |
+
(
|
126 |
+
",".join(data["question_categories"])
|
127 |
+
if isinstance(data["question_categories"], list)
|
128 |
+
else data["question_categories"]
|
129 |
+
),
|
130 |
+
data["question"],
|
131 |
+
data["final_answer"],
|
132 |
+
data.get("rationale_text", ""),
|
133 |
+
load_image(question_images[0] if question_images else None),
|
134 |
+
load_image(question_images[1] if len(question_images) > 1 else None),
|
135 |
+
load_image(question_images[2] if len(question_images) > 2 else None),
|
136 |
+
load_image(question_images[3] if len(question_images) > 3 else None),
|
137 |
+
load_image(rationale_images[0] if rationale_images else None),
|
138 |
+
load_image(rationale_images[1] if len(rationale_images) > 1 else None),
|
139 |
+
question_id,
|
140 |
+
]
|
141 |
+
except Exception as e:
|
142 |
+
print(f"Error loading question {question_id}: {str(e)}")
|
143 |
+
return [None] * 11
|
144 |
+
|
145 |
+
|
146 |
+
def load_post_image(post_id):
|
147 |
+
if not post_id:
|
148 |
+
return [None] * 21 # source image + 10 pairs of (image, text)
|
149 |
+
|
150 |
+
idx = POST_ID_TO_ID_MAP[post_id]
|
151 |
+
source_image = VALID_DATASET[idx]["image"]
|
152 |
+
|
153 |
+
# Load existing responses if any
|
154 |
+
post_folder = os.path.join("./data", str(post_id))
|
155 |
+
metadata_path = os.path.join(post_folder, "metadata.json")
|
156 |
+
|
157 |
+
if os.path.exists(metadata_path):
|
158 |
+
with open(metadata_path, "r") as f:
|
159 |
+
metadata = json.load(f)
|
160 |
+
|
161 |
+
# Initialize response data
|
162 |
+
responses = [(None, "")] * 10
|
163 |
+
|
164 |
+
# Fill in existing responses
|
165 |
+
for response in metadata["responses"]:
|
166 |
+
idx = response["response_id"]
|
167 |
+
if idx < 10: # Ensure we don't exceed our UI limit
|
168 |
+
image_path = os.path.join(post_folder, response["image_path"])
|
169 |
+
responses[idx] = (image_path, response["answer_text"])
|
170 |
+
|
171 |
+
# Flatten responses for output
|
172 |
+
flat_responses = [item for pair in responses for item in pair]
|
173 |
+
return [source_image] + flat_responses
|
174 |
+
|
175 |
+
# If no existing responses, return source image and empty responses
|
176 |
+
return [source_image] + [None] * 20
|
177 |
+
|
178 |
+
|
179 |
+
def generate_json_files(source_image, responses, post_id):
|
180 |
+
"""
|
181 |
+
Save the source image and multiple responses to the data directory
|
182 |
+
|
183 |
+
Args:
|
184 |
+
source_image: Path to the source image
|
185 |
+
responses: List of (image, answer) tuples
|
186 |
+
post_id: The post ID from the dataset
|
187 |
+
"""
|
188 |
+
# Create parent data folder if it doesn't exist
|
189 |
+
parent_data_folder = "./data"
|
190 |
+
os.makedirs(parent_data_folder, exist_ok=True)
|
191 |
+
|
192 |
+
# Create/clear post_id folder
|
193 |
+
post_folder = os.path.join(parent_data_folder, str(post_id))
|
194 |
+
if os.path.exists(post_folder):
|
195 |
+
shutil.rmtree(post_folder)
|
196 |
+
os.makedirs(post_folder)
|
197 |
+
|
198 |
+
# Save source image
|
199 |
+
source_image_path = os.path.join(post_folder, "source_image.png")
|
200 |
+
if isinstance(source_image, str):
|
201 |
+
shutil.copy2(source_image, source_image_path)
|
202 |
+
else:
|
203 |
+
gr.processing_utils.save_image(source_image, source_image_path)
|
204 |
+
|
205 |
+
# Create responses data
|
206 |
+
responses_data = []
|
207 |
+
for idx, (response_image, answer_text) in enumerate(responses):
|
208 |
+
if response_image and answer_text: # Only process if both image and text exist
|
209 |
+
response_folder = os.path.join(post_folder, f"response_{idx}")
|
210 |
+
os.makedirs(response_folder)
|
211 |
+
|
212 |
+
# Save response image
|
213 |
+
response_image_path = os.path.join(response_folder, "response_image.png")
|
214 |
+
if isinstance(response_image, str):
|
215 |
+
shutil.copy2(response_image, response_image_path)
|
216 |
+
else:
|
217 |
+
gr.processing_utils.save_image(response_image, response_image_path)
|
218 |
+
|
219 |
+
# Add to responses data
|
220 |
+
responses_data.append(
|
221 |
+
{
|
222 |
+
"response_id": idx,
|
223 |
+
"answer_text": answer_text,
|
224 |
+
"image_path": f"response_{idx}/response_image.png",
|
225 |
+
}
|
226 |
+
)
|
227 |
+
|
228 |
+
# Create metadata JSON
|
229 |
+
metadata = {
|
230 |
+
"post_id": post_id,
|
231 |
+
"source_image": "source_image.png",
|
232 |
+
"responses": responses_data,
|
233 |
+
}
|
234 |
+
|
235 |
+
# Save metadata
|
236 |
+
with open(os.path.join(post_folder, "metadata.json"), "w", encoding="utf-8") as f:
|
237 |
+
json.dump(metadata, f, ensure_ascii=False, indent=2)
|
238 |
+
|
239 |
+
return post_folder
|
240 |
+
|
241 |
+
|
242 |
+
# Build the Gradio app
|
243 |
+
with gr.Blocks() as demo:
|
244 |
+
gr.Markdown("# Image Response Collector")
|
245 |
+
|
246 |
+
# Source image selection at the top
|
247 |
+
with gr.Column():
|
248 |
+
post_id_dropdown = gr.Dropdown(
|
249 |
+
label="Select Post ID to Load Image",
|
250 |
+
choices=VALID_DATASET_POST_IDS,
|
251 |
+
type="value",
|
252 |
+
allow_custom_value=False,
|
253 |
+
)
|
254 |
+
source_image = gr.Image(label="Source Image", type="filepath")
|
255 |
+
|
256 |
+
# Responses in tabs
|
257 |
+
with gr.Tabs() as response_tabs:
|
258 |
+
responses = []
|
259 |
+
for i in range(10):
|
260 |
+
with gr.Tab(f"Response {i+1}"):
|
261 |
+
img = gr.Image(label=f"Response Image {i+1}", type="filepath")
|
262 |
+
txt = gr.Textbox(label=f"Model Name {i+1}", lines=2)
|
263 |
+
responses.append((img, txt))
|
264 |
+
|
265 |
+
with gr.Row():
|
266 |
+
submit_btn = gr.Button("Submit All Responses")
|
267 |
+
clear_btn = gr.Button("Clear Form")
|
268 |
+
|
269 |
+
def submit_responses(source_img, post_id, *response_data):
|
270 |
+
if not source_img:
|
271 |
+
gr.Warning("Please select a source image first!")
|
272 |
+
return
|
273 |
+
|
274 |
+
if not post_id:
|
275 |
+
gr.Warning("Please select a post ID first!")
|
276 |
+
return
|
277 |
+
|
278 |
+
# Convert flat response_data into pairs of (image, text)
|
279 |
+
response_pairs = list(zip(response_data[::2], response_data[1::2]))
|
280 |
+
|
281 |
+
# Filter out empty responses
|
282 |
+
valid_responses = [
|
283 |
+
(img, txt) for img, txt in response_pairs if img is not None and txt
|
284 |
+
]
|
285 |
+
|
286 |
+
if not valid_responses:
|
287 |
+
gr.Warning("Please provide at least one response (image + text)!")
|
288 |
+
return
|
289 |
+
|
290 |
+
generate_json_files(source_img, valid_responses, post_id)
|
291 |
+
gr.Info("Responses saved successfully! 🎉")
|
292 |
+
|
293 |
+
def clear_form():
|
294 |
+
outputs = [None] * (1 + 20) # 1 source image + 10 pairs of (image, text)
|
295 |
+
return outputs
|
296 |
+
|
297 |
+
# Connect components
|
298 |
+
post_id_dropdown.change(
|
299 |
+
fn=load_post_image,
|
300 |
+
inputs=[post_id_dropdown],
|
301 |
+
outputs=[source_image] + [comp for pair in responses for comp in pair],
|
302 |
+
)
|
303 |
+
|
304 |
+
submit_inputs = [source_image, post_id_dropdown] + [
|
305 |
+
comp for pair in responses for comp in pair
|
306 |
+
]
|
307 |
+
submit_btn.click(fn=submit_responses, inputs=submit_inputs)
|
308 |
+
|
309 |
+
clear_outputs = [source_image] + [comp for pair in responses for comp in pair]
|
310 |
+
clear_btn.click(fn=clear_form, outputs=clear_outputs)
|
311 |
+
|
312 |
+
|
313 |
+
def process_thread():
|
314 |
+
while True:
|
315 |
+
try:
|
316 |
+
pass
|
317 |
+
# process_and_push_dataset(
|
318 |
+
# "./data",
|
319 |
+
# FINAL_DATASET_REPO,
|
320 |
+
# token=os.environ["HF_TOKEN"],
|
321 |
+
# private=True,
|
322 |
+
# )
|
323 |
+
except Exception as e:
|
324 |
+
print(f"Error in process thread: {e}")
|
325 |
+
time.sleep(120) # Sleep for 2 minutes
|
326 |
+
|
327 |
+
|
328 |
+
if __name__ == "__main__":
|
329 |
+
print("Initializing app...")
|
330 |
+
sync_with_hub() # Sync before launching the app
|
331 |
+
print("Starting Gradio interface...")
|
332 |
+
|
333 |
+
# Start the processing thread when the app starts
|
334 |
+
processing_thread = threading.Thread(target=process_thread, daemon=True)
|
335 |
+
processing_thread.start()
|
336 |
+
|
337 |
+
demo.launch()
|
utils.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import pandas as pd
|
4 |
+
from pathlib import Path
|
5 |
+
from datasets import Dataset, Features, Value, Sequence, Image as ImageFeature
|
6 |
+
|
7 |
+
|
8 |
+
def process_and_push_dataset(
|
9 |
+
data_dir: str, hub_repo: str, token: str, private: bool = True
|
10 |
+
):
|
11 |
+
"""
|
12 |
+
Process local dataset files and push to Hugging Face Hub.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
data_dir (str): Path to the data directory containing submission folders
|
16 |
+
hub_repo (str): Name of the Hugging Face repository to push to
|
17 |
+
private (bool): Whether to make the pushed dataset private
|
18 |
+
|
19 |
+
Returns:
|
20 |
+
datasets.Dataset: The processed dataset
|
21 |
+
"""
|
22 |
+
# List to store all records
|
23 |
+
all_records = []
|
24 |
+
|
25 |
+
# Walk through all subdirectories in data_dir
|
26 |
+
for root, dirs, files in os.walk(data_dir):
|
27 |
+
for file in files:
|
28 |
+
if file == "question.json":
|
29 |
+
file_path = Path(root) / file
|
30 |
+
try:
|
31 |
+
# Read the JSON file
|
32 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
33 |
+
record = json.load(f)
|
34 |
+
|
35 |
+
# Get the folder path for this record
|
36 |
+
folder_path = os.path.dirname(file_path)
|
37 |
+
|
38 |
+
# Fix image paths to include full path
|
39 |
+
if "question_images" in record:
|
40 |
+
record["question_images"] = [
|
41 |
+
str(Path(folder_path) / img_path)
|
42 |
+
for img_path in record["question_images"]
|
43 |
+
if img_path
|
44 |
+
]
|
45 |
+
|
46 |
+
if "rationale_images" in record:
|
47 |
+
record["rationale_images"] = [
|
48 |
+
str(Path(folder_path) / img_path)
|
49 |
+
for img_path in record["rationale_images"]
|
50 |
+
if img_path
|
51 |
+
]
|
52 |
+
|
53 |
+
# Flatten author_info dictionary
|
54 |
+
author_info = record.pop("author_info", {})
|
55 |
+
record.update(
|
56 |
+
{f"author_{k}": v for k, v in author_info.items()}
|
57 |
+
)
|
58 |
+
|
59 |
+
# Add the record
|
60 |
+
all_records.append(record)
|
61 |
+
except Exception as e:
|
62 |
+
print(f"Error processing {file_path}: {e}")
|
63 |
+
|
64 |
+
# Convert to DataFrame
|
65 |
+
df = pd.DataFrame(all_records)
|
66 |
+
|
67 |
+
# Sort by custom_id for consistency
|
68 |
+
if not df.empty and "custom_id" in df.columns:
|
69 |
+
df = df.sort_values("custom_id")
|
70 |
+
|
71 |
+
# Ensure all required columns exist with default values
|
72 |
+
required_columns = {
|
73 |
+
"custom_id": "",
|
74 |
+
"author_name": "",
|
75 |
+
"author_email_address": "",
|
76 |
+
"author_institution": "",
|
77 |
+
"question_categories": [],
|
78 |
+
"question": "",
|
79 |
+
"question_images": [],
|
80 |
+
"final_answer": "",
|
81 |
+
"rationale_text": "",
|
82 |
+
"rationale_images": [],
|
83 |
+
"image_attribution": "",
|
84 |
+
"subquestions_1_text": "",
|
85 |
+
"subquestions_1_answer": "",
|
86 |
+
"subquestions_2_text": "",
|
87 |
+
"subquestions_2_answer": "",
|
88 |
+
"subquestions_3_text": "",
|
89 |
+
"subquestions_3_answer": "",
|
90 |
+
"subquestions_4_text": "",
|
91 |
+
"subquestions_4_answer": "",
|
92 |
+
"subquestions_5_text": "",
|
93 |
+
"subquestions_5_answer": "",
|
94 |
+
}
|
95 |
+
|
96 |
+
for col, default_value in required_columns.items():
|
97 |
+
if col not in df.columns:
|
98 |
+
df[col] = default_value
|
99 |
+
|
100 |
+
# Define features
|
101 |
+
features = Features(
|
102 |
+
{
|
103 |
+
"custom_id": Value("string"),
|
104 |
+
"question": Value("string"),
|
105 |
+
"question_images": Sequence(ImageFeature()),
|
106 |
+
"question_categories": Sequence(Value("string")),
|
107 |
+
"final_answer": Value("string"),
|
108 |
+
"rationale_text": Value("string"),
|
109 |
+
"rationale_images": Sequence(ImageFeature()),
|
110 |
+
"image_attribution": Value("string"),
|
111 |
+
"subquestions_1_text": Value("string"),
|
112 |
+
"subquestions_1_answer": Value("string"),
|
113 |
+
"subquestions_2_text": Value("string"),
|
114 |
+
"subquestions_2_answer": Value("string"),
|
115 |
+
"subquestions_3_text": Value("string"),
|
116 |
+
"subquestions_3_answer": Value("string"),
|
117 |
+
"subquestions_4_text": Value("string"),
|
118 |
+
"subquestions_4_answer": Value("string"),
|
119 |
+
"subquestions_5_text": Value("string"),
|
120 |
+
"subquestions_5_answer": Value("string"),
|
121 |
+
"author_name": Value("string"),
|
122 |
+
"author_email_address": Value("string"),
|
123 |
+
"author_institution": Value("string"),
|
124 |
+
}
|
125 |
+
)
|
126 |
+
|
127 |
+
# Convert DataFrame to dict of lists (Hugging Face Dataset format)
|
128 |
+
dataset_dict = {col: df[col].tolist() for col in features.keys()}
|
129 |
+
|
130 |
+
# Create Dataset directly from dict
|
131 |
+
dataset = Dataset.from_dict(dataset_dict, features=features)
|
132 |
+
|
133 |
+
# Push to hub
|
134 |
+
dataset.push_to_hub(hub_repo, private=private, max_shard_size="200MB", token=token)
|
135 |
+
|
136 |
+
print(f"\nDataset Statistics:")
|
137 |
+
print(f"Total number of submissions: {len(dataset)}")
|
138 |
+
print(f"\nSuccessfully pushed dataset to {hub_repo}")
|
139 |
+
|
140 |
+
return dataset
|
141 |
+
|
142 |
+
|
143 |
+
def save_metadata(post_id, metadata):
|
144 |
+
# Create directory named after post_id
|
145 |
+
directory = os.path.join("data", post_id)
|
146 |
+
os.makedirs(directory, exist_ok=True)
|
147 |
+
|
148 |
+
# Add post_id to metadata
|
149 |
+
metadata["post_id"] = post_id
|
150 |
+
|
151 |
+
# Save metadata to JSON file
|
152 |
+
metadata_path = os.path.join(directory, "metadata.json")
|
153 |
+
with open(metadata_path, "w") as f:
|
154 |
+
json.dump(metadata, f, indent=4)
|